Ding Jian-Fa, Yamanaka Kodai, Hong Shao-Huan, Chen Guan-Lin, Wu Wei-Ni, Lin Jhih-Min, Tung Shih-Huang, Osaka Itaru, Liu Cheng-Liang
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan.
Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan.
Adv Sci (Weinh). 2024 Dec;11(48):e2410046. doi: 10.1002/advs.202410046. Epub 2024 Nov 3.
This study investigates backbone engineering and evaluates the thermoelectric properties of FeCl-doped naphthobisthiadiazole (NTz)-based donor-acceptor (D-A) conjugated polymer films. The NTz acceptor unit is coupled with three distinct donor units, namely dialkylated terthiophene (3T), dialkylated quaterthiophene (4T), and dialkylated bisthienyl thienothiophene (2T-TT) to yield copolymers designated as PNTz3T, PNTz4T, and PNTzTT. The difference in donor units leads to diverse molecule stacking and electronic properties, which can be systematically discovered via the three polymers. The linear structure of PNTz4T enables an orderly arrangement of side chains, thereby promoting dopant intercalation for enhanced carrier concentration. Additionally, this linear structure leads to an edge-on stacking mode, thereby improving the in-plane carrier mobility. As a result, the doped PNTz4T exhibits the highest electrical conductivity (σ) of 88.3 S cm along with a Seebeck coefficient (S) of 62.2 µV K, thereby achieving the highest power factor (PF) of 34.2 µW m K. These results highlight the relationship between the molecular design, microstructure, and doping effects in manipulating the thermoelectric performance of doped NTz-based D-A polymers.
本研究探究了主链工程,并评估了基于氯化铁掺杂萘并双噻二唑(NTz)的供体-受体(D-A)共轭聚合物薄膜的热电性能。NTz受体单元与三种不同的供体单元相连,即二烷基化的对三联噻吩(3T)、二烷基化的对四噻吩(4T)和二烷基化的双噻吩并噻吩(2T-TT),以生成名为PNTz3T、PNTz4T和PNTzTT的共聚物。供体单元的差异导致了不同的分子堆积和电子性质,这可以通过这三种聚合物系统地发现。PNTz4T的线性结构使得侧链能够有序排列,从而促进掺杂剂嵌入以提高载流子浓度。此外,这种线性结构导致了面外堆积模式,从而提高了面内载流子迁移率。结果,掺杂后的PNTz4T表现出最高的电导率(σ),为88.3 S cm,塞贝克系数(S)为62.2 µV K,从而实现了34.2 µW m K的最高功率因子(PF)。这些结果突出了分子设计、微观结构和掺杂效应在调控基于NTz的掺杂D-A聚合物热电性能方面的关系。