Shi Xianyu, Sun Panpan, Wang Xin, Xiang Wang, Wei Yongan, Lv Xiaowei, Sun Xiaohua
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China.
College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China.
J Colloid Interface Sci. 2025 Feb;679(Pt B):1029-1039. doi: 10.1016/j.jcis.2024.10.129. Epub 2024 Oct 24.
Developing efficient bifunctional oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) electrocatalysts is potential ways for achieving high rechargeable zinc-air (Zn-air) battery performance. Herein, we report an iron (II) acetate-assisted strategy to synthesize CoFe-NC-OAc catalyst with cobalt iron (CoFe) alloy anchored on nitrogen-doped carbon (NC) matrix, which can serve as efficient ORR/OER bifunctional electrocatalysts for rechargeable Zn-air batteries. Apart from alloying with Co to form ORR/OER active CoFe nanoparticles, the incorporation of iron (II) acetate has expanded the pore size inside the CoFe-NC-OAc catalyst to serve as gas transfer channels, and has induced synergetic electronic coupling between CoFe nanoparticles and NC matrix for boosting catalytic activity. Therefore, CoFe-NC-OAc exhibits favorable ORR activity with a most positive half-wave potential of 0.90 V vs. RHE, fast ORR kinetics with a highest kinetic current density of 57.4 mA cm at 0.85 V vs. RHE, and fast O diffusion and transport that enables smaller mass transport overpotential at high current density up to 800 mA cm. Additionally, CoFe-NC-OAc can catalyze OER with low overpotential of 310 mV at 10 mA cm. When employed as air electrode for Zn-air batteries, CoFe-NC-OAc achieve high peak power densities of 193 mW cm and 587 mW cm in liquid and solid-state Zn-air batteries. The liquid battery also exhibits high specific capacity and remarkable cycling performance. This work opens up a new opportunity for developing highly efficient bifunctional electrocatalysts for Zn-air battery applications.
开发高效的双功能氧还原反应(ORR)/析氧反应(OER)电催化剂是实现高可充电锌空气(Zn-air)电池性能的潜在途径。在此,我们报道了一种醋酸亚铁辅助策略,用于合成钴铁(CoFe)合金锚定在氮掺杂碳(NC)基质上的CoFe-NC-OAc催化剂,该催化剂可作为可充电锌空气电池的高效ORR/OER双功能电催化剂。除了与Co合金化形成ORR/OER活性CoFe纳米颗粒外,醋酸亚铁的加入扩大了CoFe-NC-OAc催化剂内部的孔径,作为气体传输通道,并诱导了CoFe纳米颗粒与NC基质之间的协同电子耦合,以提高催化活性。因此,CoFe-NC-OAc表现出良好的ORR活性,相对于可逆氢电极(RHE)的最正半波电位为0.90 V,在相对于RHE为0.85 V时具有高达57.4 mA cm的最高动力学电流密度的快速ORR动力学,以及快速的O扩散和传输,使得在高达800 mA cm的高电流密度下具有更小的传质过电位。此外,CoFe-NC-OAc可以在10 mA cm下以310 mV的低过电位催化OER。当用作锌空气电池的空气电极时,CoFe-NC-OAc在液态和固态锌空气电池中实现了193 mW cm和587 mW cm的高峰值功率密度。液态电池还表现出高比容量和出色的循环性能。这项工作为开发用于锌空气电池应用的高效双功能电催化剂开辟了新机会。