Suppr超能文献

Experimental analysis of a solar air heater using waste mild steel chips as a sensible heat storage material.

作者信息

Das Harjyoti, Dutta Pooja, Dutta Partha Pratim, Choudhury Pradyumna Kumar

机构信息

Department of Mechanical Engineering, School of Engineering, Tezpur University, Tezpur, India.

Department of Energy, School of Engineering, Tezpur University, Tezpur, India.

出版信息

Environ Sci Pollut Res Int. 2025 Jun;32(28):17262-17284. doi: 10.1007/s11356-024-35415-y. Epub 2024 Nov 4.

Abstract

Heat storage materials improve the utility of solar air heaters (SAHs) after sunset. This study investigates an improved solar air heater (SAH) performance with baffles and waste mild steel chips as sensible heat storage (SHS) materials. Comparative experimental natural convection heat transfer studies were performed with four different improved air heater setups under similar solar radiation conditions. These setups consist of a flat collector plate (I), a baffled plate collector (II), a flat plate collector with SHS (III) and a baffled plate collector with SHS (IV) respectively. Setups I, II, III and IV were obtained by modifying the same air heater enclosure and each experiment was replicated for three similar sunny days. During the periods, the solar radiation varied in the range of 556-934 W/m. The maximum thermal efficiencies found for setups I, II, III and IV were 18.76%, 22.40%, 27.21% and 28.22% respectively under natural convection. The highest average useful energy rate was produced by setup IV, followed by setups III, II and I. After sunset, setups III and IV were able to deliver warm air for an extended period of 1 h, 18 min and 1 h, 42 min, respectively. It was found that setups III and IV had sensible thermal energy storage reserves of 0.38 kJ and 0.53 kJ, respectively. The storage efficiencies found for setups III and IV were 60.25% and 70.89%, respectively. Among the four setups, setup IV boasts the most economical energy cost at 1.39 ₹/kWh and having the least payback period of 1 year 4 months. As a result, the employment of baffles and waste mild steel chips as SHS in a flat plate SAH not only presents a method for harvesting waste for efficient heat retention, but it also effectively uses solar energy for beneficial uses.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验