Tan Shenglong, Luo Xinghong, Wang Yifan, Chen Shangsi, Jiang Tao, Yang Xiaoshan, Peng Xinyi, Zhang Xinyao, Zhang Sheng, Zhang Chengfei, Liu Zhenzhen, Ma Dandan
Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Biomaterials. 2025 Apr;315:122917. doi: 10.1016/j.biomaterials.2024.122917. Epub 2024 Oct 23.
Traumatic defects or non-union fractures presents a substantial challenge in the fields of tissue engineering and regenerative medicine. Although synthetic calcium phosphate-based biomaterials (CaPs) such as dibasic calcium phosphate anhydrate (DCPA) are commonly employed for bone repair, their inadequate cellular immune responses significantly impede sustained degradation and optimal osteogenesis. In this study, drawing inspiration from the key structure of an acidic non-collagenous protein-CaP complex (ANCPs-CaP) essential for natural bone formation, we prepared biomimetic mineralized dibasic calcium phosphate (MDCPA). This preparation utilized plant-derived non-collagenous protein Zein as the organic template and acidic artificial saliva as the mineralization medium. Physicochemical property analysis revealed that MDCPA is a complex of Zein and DCPA, which mimics the composite of the natural ANCP-CaP. Moreover, MDCPA exhibited enhanced biodegradability and osteogenic potential. Mechanistic insight revealed that MDCPA can be phagocytized and degraded by macrophages via the FCγRIII receptor, leading to the release of interleukin 27 (IL-27), which promotes osteogenic differentiation by osteoimmunomodulation. The critical role of IL-27 in osteogenesis is further confirmed using IL-27 gene knockout mice. Additionally, MDCPA demonstrates effective healing of critical-sized defects in rat cranial bones within only 4 w, providing a promising basis and valuable insights for critical-sized bone defects regeneration.
创伤性缺损或骨折不愈合在组织工程和再生医学领域提出了重大挑战。尽管诸如无水磷酸氢钙(DCPA)等合成磷酸钙基生物材料常用于骨修复,但其细胞免疫反应不足显著阻碍了持续降解和最佳成骨作用。在本研究中,从天然骨形成所必需的酸性非胶原蛋白 - 磷酸钙复合物(ANCPs - CaP)的关键结构中获取灵感,我们制备了仿生矿化磷酸氢钙(MDCPA)。该制备过程利用植物源非胶原蛋白玉米醇溶蛋白作为有机模板,并使用酸性人工唾液作为矿化介质。物理化学性质分析表明,MDCPA是玉米醇溶蛋白和DCPA的复合物,它模拟了天然ANCP - CaP的复合物。此外,MDCPA表现出增强的生物降解性和成骨潜力。机制研究表明,MDCPA可被巨噬细胞通过FCγRIII受体吞噬和降解,导致白细胞介素27(IL - 27)的释放,其通过骨免疫调节促进成骨分化。使用IL - 27基因敲除小鼠进一步证实了IL - 27在成骨中的关键作用。此外,MDCPA仅在4周内就有效治愈了大鼠颅骨的临界尺寸缺损,为临界尺寸骨缺损再生提供了有前景的基础和有价值的见解。