Suppr超能文献

强耦合自旋系统核磁共振谱的神经网络分析

Neural net analysis of NMR spectra from strongly-coupled spin systems.

作者信息

Prestegard James H, Boons Geert-Jan, Chopra Pradeep, Glushka John, Grimes John H, Simon Bernd

机构信息

Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States.

Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States; Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, Netherlands (the).

出版信息

J Magn Reson. 2024 Nov;368:107792. doi: 10.1016/j.jmr.2024.107792. Epub 2024 Oct 22.

Abstract

Extracting parameters such as chemical shifts and coupling constants from proton NMR spectra is often a first step in using spectra for compound identification and structure determination. This can become challenging when scalar couplings between protons are comparable in size to chemical shift differences (strongly coupled), as is often the case with low-field (bench top) spectrometers. Here we explore the potential utility of AI methods, in particular neural networks, for extracting parameters from low-field spectra. Rather than seeking large experimental sets of spectra for training a network, we chose quantum mechanical simulation of sets, something that is possible with modern software packages and computer resources. We show that application of a network trained on 2-D J-resolved spectra and applied to a spectrum of iduronic acid, shows some promise, but also meets with some obstacles. We suggest that these may be overcome with improved pulse sequences and more extensive simulations.

摘要

从质子核磁共振谱中提取化学位移和耦合常数等参数,通常是利用光谱进行化合物鉴定和结构测定的第一步。当质子之间的标量耦合在大小上与化学位移差异相当(强耦合)时,这可能会变得具有挑战性,低场(台式)光谱仪常常会出现这种情况。在此,我们探索人工智能方法,特别是神经网络,从低场光谱中提取参数的潜在效用。我们没有寻求大量的实验光谱集来训练网络,而是选择了对光谱集进行量子力学模拟,这在现代软件包和计算机资源的条件下是可行的。我们表明,在二维J分辨光谱上训练并应用于艾杜糖醛酸光谱的网络,显示出了一些前景,但也遇到了一些障碍。我们认为,通过改进脉冲序列和更广泛的模拟,这些障碍可能会被克服。

相似文献

1
Neural net analysis of NMR spectra from strongly-coupled spin systems.
J Magn Reson. 2024 Nov;368:107792. doi: 10.1016/j.jmr.2024.107792. Epub 2024 Oct 22.
2
Extracting Scalar Couplings From Complex H NMR Spectra Using a Simple 2D J-Resolved Sequence.
Magn Reson Chem. 2024 Dec;62(12):841-849. doi: 10.1002/mrc.5480. Epub 2024 Sep 18.
3
A General Method for Extracting Individual Coupling Constants from Crowded (1)H NMR Spectra.
Angew Chem Int Ed Engl. 2016 Jan 18;55(3):1090-3. doi: 10.1002/anie.201508691. Epub 2015 Dec 4.
4
Measuring J values with a selective constant-time 2D NMR protocol.
J Magn Reson. 2016 Nov;272:20-24. doi: 10.1016/j.jmr.2016.08.019. Epub 2016 Sep 1.
6
Combining Fourier phase encoding and broadband inversion toward J-edited spectra.
J Magn Reson. 2018 Jun;291:1-7. doi: 10.1016/j.jmr.2018.02.021. Epub 2018 Mar 20.
10
J-edited pure shift NMR for the facile measurement of (n)J(HH) for specific protons.
Chemphyschem. 2015 Apr 7;16(5):1079-82. doi: 10.1002/cphc.201402792. Epub 2015 Jan 29.

本文引用的文献

2
Virtual Homonuclear Decoupling in Direct Detection Nuclear Magnetic Resonance Experiments Using Deep Neural Networks.
J Am Chem Soc. 2021 Oct 20;143(41):16935-16942. doi: 10.1021/jacs.1c04010. Epub 2021 Oct 11.
3
Using molecular dynamics trajectories to predict nuclear spin relaxation behaviour in large spin systems.
J Magn Reson. 2021 Feb;323:106891. doi: 10.1016/j.jmr.2020.106891. Epub 2020 Dec 13.
4
The 3--sulfation of heparan sulfate modulates protein binding and lyase degradation.
Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2012935118.
5
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
7
Multiscale modeling of glycosaminoglycan structure and dynamics: current methods and challenges.
Curr Opin Struct Biol. 2018 Jun;50:58-64. doi: 10.1016/j.sbi.2017.11.008. Epub 2017 Dec 15.
8
Large-scale NMR simulations in liquid state: A tutorial.
Magn Reson Chem. 2018 Jun;56(6):415-437. doi: 10.1002/mrc.4660. Epub 2017 Nov 27.
9
Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review.
Neural Comput. 2017 Sep;29(9):2352-2449. doi: 10.1162/NECO_a_00990. Epub 2017 Jun 9.
10
NMRbox: A Resource for Biomolecular NMR Computation.
Biophys J. 2017 Apr 25;112(8):1529-1534. doi: 10.1016/j.bpj.2017.03.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验