Suppr超能文献

通过深度神经网络实现的大型非氘代蛋白质的溶液态甲基核磁共振光谱学。

Solution-state methyl NMR spectroscopy of large non-deuterated proteins enabled by deep neural networks.

作者信息

Karunanithy Gogulan, Shukla Vaibhav Kumar, Hansen D Flemming

机构信息

Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.

The Francis Crick Institute, London, NW1 1BF, UK.

出版信息

Nat Commun. 2024 Jun 13;15(1):5073. doi: 10.1038/s41467-024-49378-8.

Abstract

Methyl-TROSY nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterising large biomolecules in solution. However, preparing samples for these experiments is demanding and entails deuteration, limiting its use. Here we demonstrate that NMR spectra recorded on protonated, uniformly C labelled samples can be processed using deep neural networks to yield spectra that are of similar quality to typical deuterated methyl-TROSY spectra, potentially providing information for proteins that cannot be produced in bacterial systems. We validate the methodology experimentally on three proteins with molecular weights in the range 42-360 kDa. We further demonstrate the applicability of our methodology to 3D NOESY spectra of Escherichia coli Malate Synthase G (81 kDa), where observed NOE cross-peaks are in good agreement with the available structure. The method represents an advance in the field of using deep learning to analyse complex magnetic resonance data and could have an impact on the study of large biomolecules in years to come.

摘要

甲基-TROSY核磁共振(NMR)光谱法是一种用于表征溶液中大型生物分子的强大技术。然而,为这些实验制备样品要求很高,且需要进行氘代,这限制了其应用。在此,我们证明,使用深度神经网络可以处理在质子化、均匀碳标记的样品上记录的NMR光谱,从而产生与典型的氘代甲基-TROSY光谱质量相似的光谱,这可能为无法在细菌系统中产生的蛋白质提供信息。我们在三种分子量范围为42-360 kDa的蛋白质上通过实验验证了该方法。我们进一步证明了我们的方法对大肠杆菌苹果酸合酶G(81 kDa)的三维NOESY光谱的适用性,其中观察到的NOE交叉峰与现有结构高度吻合。该方法代表了利用深度学习分析复杂磁共振数据领域的一项进展,可能会在未来几年对大型生物分子的研究产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39f4/11176362/1c9c8442e346/41467_2024_49378_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验