Suppr超能文献

用于戒烟的对话式聊天机器人的疗效:QuitBot全面随机对照试验方案。

Efficacy of a conversational chatbot for cigarette smoking cessation: Protocol of the QuitBot full-scale randomized controlled trial.

作者信息

Bricker Jonathan B, Sullivan Brianna M, Mull Kristin E, Lavista-Ferres Juan, Santiago-Torres Margarita

机构信息

Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, USA; University of Washington, Department of Psychology, Seattle, WA, USA.

Fred Hutchinson Cancer Center, Division of Public Health Sciences, Seattle, WA, USA.

出版信息

Contemp Clin Trials. 2024 Dec;147:107727. doi: 10.1016/j.cct.2024.107727. Epub 2024 Oct 28.

Abstract

Globally, cigarette smoking results in over 8 million premature annual deaths. Addressing this issue requires high-impact, cost-effective population-level interventions for smoking cessation. Conversational chatbots offer a potential solution given the recent advancements in machine learning and large language models. Chatbots can deliver supportive, empathetic behaviors, personalized responses, and timely advice tailored to users' needs that is engaging through therapeutic conversations aimed at creating lasting social-emotional connections. Despite their promise, little is known about the efficacy and underlying mechanisms of chatbots for cigarette smoking cessation. We developed QuitBot, a quit smoking program of two to three-minute conversations covering topics ranging from motivations to quit, setting a quit date, choosing cessation medications, coping with triggers, maintaining abstinence, and recovering from a relapse. QuitBot employs conversational interactions, powered by an expert-curated large language model, allowing users to ask questions and receive personalized guidance on quitting smoking. Here, we report the design and execution of a randomized clinical trial comparing QuitBot (n = 760) against Smokefree TXT (SFT) text messaging program (n = 760), with a 12-month follow-up period. Both interventions include 42-days of content on motivations to quit, skills to cope with triggers, and relapse prevention. The key distinction between QuitBot and SFT is that QuitBot has communication and engagement features. This study aims to determine: whether QuitBot yields higher quit rates than SFT; and whether therapeutic alliance processes and engagement are mechanisms underlying cessation outcomes. Additionally, we will explore whether baseline factors including trust, social support, and demographics, moderate the efficacy of QuitBot. Trial Registration numberClinicalTrials.govNCT04308759.

摘要

在全球范围内,吸烟每年导致超过800万人过早死亡。解决这一问题需要采取具有高影响力、成本效益高的全人群戒烟干预措施。鉴于机器学习和大语言模型的最新进展,对话式聊天机器人提供了一种潜在的解决方案。聊天机器人可以提供支持性、共情性的行为、个性化的回复以及根据用户需求量身定制的及时建议,通过旨在建立持久社会情感联系的治疗性对话来吸引用户。尽管它们前景广阔,但对于聊天机器人在戒烟方面的功效和潜在机制却知之甚少。我们开发了戒烟机器人(QuitBot),这是一个为期两到三分钟的戒烟项目,涵盖从戒烟动机、设定戒烟日期、选择戒烟药物、应对触发因素、保持戒烟状态到从复吸中恢复等主题。戒烟机器人采用由专家精心策划的大语言模型驱动的对话交互方式,让用户能够提问并获得关于戒烟的个性化指导。在此,我们报告一项随机临床试验的设计与实施情况,该试验将戒烟机器人(n = 760)与无烟短信(SFT)项目(n = 760)进行比较,随访期为12个月。两种干预措施都包括为期42天的关于戒烟动机、应对触发因素的技巧和预防复吸的内容。戒烟机器人和无烟短信的关键区别在于,戒烟机器人具有沟通和参与功能。本研究旨在确定:戒烟机器人的戒烟率是否高于无烟短信;治疗联盟过程和参与度是否是戒烟结果的潜在机制。此外,我们将探讨包括信任、社会支持和人口统计学在内的基线因素是否会调节戒烟机器人的疗效。试验注册号:美国国立医学图书馆临床试验注册中心NCT04308759。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验