Department of Computer Science and Electrical Engineering, Handong Global University, 37554, South Korea.
Department of Computer Science and Electrical Engineering, Handong Global University, 37554, South Korea; School of Computer Science and Electrical Engineering, Handong Global University, 37554, South Korea.
Neuroimage. 2024 Nov 15;302:120906. doi: 10.1016/j.neuroimage.2024.120906. Epub 2024 Oct 28.
Motor imagery (MI) is one of the popular control paradigms in the non-invasive brain-computer interface (BCI) field. MI-BCI generally requires users to conduct the imagination of movement (e.g., left or right hand) to collect training data for generating a classification model during the calibration phase. However, this calibration phase is generally time-consuming and tedious, as users conduct the imagination of hand movement several times without being given feedback for an extended period. This obstacle makes MI-BCI non user-friendly and hinders its use. On the other hand, motor execution (ME) and motor observation (MO) are relatively easier tasks, yield lower fatigue than MI, and share similar neural mechanisms to MI. However, few studies have integrated these three tasks into BCIs. In this study, we propose a new task-to-task transfer learning approach of 3-motor tasks (ME, MO, and MI) for building a better user-friendly MI-BCI. For this study, 28 subjects participated in 3-motor tasks experiment, and electroencephalography (EEG) was acquired. User opinions regarding the 3-motor tasks were also collected through questionnaire survey. The 3-motor tasks showed a power decrease in the alpha rhythm, known as event-related desynchronization, but with slight differences in the temporal patterns. In the classification analysis, the cross-validated accuracy (within-task) was 67.05 % for ME, 65.93 % for MI, and 73.16 % for MO on average. Consistently with the results, the subjects scored MI (3.16) as the most difficult task compared with MO (1.42) and ME (1.41), with p < 0.05. In the analysis of task-to-task transfer learning, where training and testing are performed using different task datasets, the ME-trained model yielded an accuracy of 65.93 % (MI test), which is statistically similar to the within-task accuracy (p > 0.05). The MO-trained model achieved an accuracy of 60.82 % (MI test). On the other hand, combining two datasets yielded interesting results. ME and 50 % of the MI-trained model (50-shot) classified MI with a 69.21 % accuracy, which outperformed the within-task accuracy (p < 0.05), and MO and 50 % of the MI-trained model showed an accuracy of 66.75 %. Of the low performers with a within-task accuracy of 70 % or less, 90 % (n = 21) of the subjects improved in training with ME, and 76.2 % (n = 16) improved in training with MO on the MI test at 50-shot. These results demonstrate that task-to-task transfer learning is possible and could be a promising approach to building a user-friendly training protocol in MI-BCI.
运动想象 (MI) 是无创脑-机接口 (BCI) 领域中流行的控制范式之一。MI-BCI 通常要求用户进行运动想象(例如左手或右手),以在校准阶段收集训练数据以生成分类模型。然而,这个校准阶段通常很耗时且乏味,因为用户在没有得到反馈的情况下长时间进行多次手部运动想象。这个障碍使得 MI-BCI 不便于用户使用并阻碍了其应用。另一方面,运动执行 (ME) 和运动观察 (MO) 是相对较容易的任务,比 MI 产生的疲劳感更低,并且与 MI 具有相似的神经机制。然而,很少有研究将这三个任务整合到 BCI 中。在这项研究中,我们提出了一种新的 3 个运动任务(ME、MO 和 MI)之间的任务到任务转移学习方法,用于构建更便于用户使用的 MI-BCI。为此,28 名受试者参加了 3 个运动任务实验,并采集了脑电图 (EEG)。通过问卷调查收集了用户对 3 个运动任务的意见。3 个运动任务在 alpha 节律中表现出功率下降,称为事件相关去同步,但时间模式略有不同。在分类分析中,ME 的交叉验证准确率(任务内)为 67.05%,MI 为 65.93%,MO 为 73.16%,平均为 67.05%。一致的是,与 MO(1.42)和 ME(1.41)相比,受试者将 MI(3.16)评为最困难的任务,p<0.05。在任务到任务转移学习分析中,训练和测试使用不同的任务数据集进行,ME 训练的模型产生了 65.93%(MI 测试)的准确率,与任务内准确率(p>0.05)统计学上相似。MO 训练的模型实现了 60.82%(MI 测试)的准确率。另一方面,结合两个数据集产生了有趣的结果。ME 和 50%的 MI 训练模型(50 次射击)以 69.21%的准确率对 MI 进行分类,优于任务内准确率(p<0.05),MO 和 50%的 MI 训练模型的准确率为 66.75%。在任务内准确率为 70%或更低的低表现者中,90%(n=21)的受试者在 ME 训练中得到了提高,76.2%(n=16)在 MO 训练中得到了提高,在 50 次射击的 MI 测试中提高了准确率。这些结果表明,任务到任务的转移学习是可能的,并且可能是构建 MI-BCI 中用户友好型训练协议的有前途的方法。