Zhao Liyi, Dong Qingyu, Wang Yueqi, Xue Guoyong, Wang Xuechun, Li Zhiyun, Shao Hui, Chen Hongwei, Shen Yanbin, Chen Liwei
i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China.
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Electrochemical Energy Device Research Center (SEED) and In situ Center for Physical Sciences, Shanghai Jiaotong University, Shanghai, 200240, P. R. China.
Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202412280. doi: 10.1002/anie.202412280. Epub 2024 Nov 19.
Solid polymer electrolytes (SPEs) are promising ionic conductors for developing high-specific-energy solid-state lithium metal batteries. However, developing SPEs with both high ionic conductivity and interfacial compatibility remains a challenge. Here, we propose a design concept of an anion-modulated polymer electrolyte (termed AMPE) for high-voltage Li metal batteries. Specifically, we design the AMPE by incorporating high-voltage-resistant and high charge density units with an anion receptor unit. The high-voltage-resistant and high charge density segments contribute to achieving a decent voltage tolerance of the polymer chains and ensure sufficient carrier ions. The anion receptor, represented by a boron-containing molecule, promotes the generation of free Li by dissociating anion-cation pairs. More importantly, the strong interaction between the electron-deficient B and the TFSI in the matrix promotes the anion reduction to form a stable anion-derived mosaic-like solid electrolyte interphase on the Li-metal anode. As a result, the AMPE exhibits a high ionic conductivity of 3.80×10 S cm and effectively suppresses lithium dendrites, enabling an all-solid-state Li|AMPE|LiCoO cell to achieve a cycle life of 700 cycles at an operating voltage of 4.40 V. This design concept would inspire efforts to develop high-performance SPEs for high-specific-energy solid-state lithium metal batteries.
固态聚合物电解质(SPEs)是用于开发高比能固态锂金属电池的有前景的离子导体。然而,开发兼具高离子电导率和界面相容性的SPEs仍然是一项挑战。在此,我们提出了一种用于高压锂金属电池的阴离子调制聚合物电解质(称为AMPE)的设计概念。具体而言,我们通过将耐高压且高电荷密度的单元与阴离子受体单元结合来设计AMPE。耐高压且高电荷密度的链段有助于实现聚合物链良好的电压耐受性并确保有足够的载流子离子。以含硼分子为代表的阴离子受体通过解离阴离子 - 阳离子对促进游离Li的生成。更重要的是,缺电子的B与基质中的TFSI之间的强相互作用促进阴离子还原,从而在锂金属阳极上形成稳定的阴离子衍生的马赛克状固体电解质界面。结果,AMPE表现出3.80×10⁻⁴ S cm⁻¹的高离子电导率,并有效抑制锂枝晶的生长,使全固态Li|AMPE|LiCoO₂电池在4.40 V的工作电压下实现700次循环的循环寿命。这种设计概念将激发人们为开发用于高比能固态锂金属电池的高性能SPEs而做出努力。