Zhang Yangqian, Liu Han, Liu Fangyan, Zhang Shuoxiao, Zhou Mengyuan, Liao Yaqi, Wei Ying, Dong Weixia, Li Tianyi, Liu Chen, Liu Qi, Xu Henghui, Sun Gang, Wang Zhenbo, Ren Yang, Yang Jiayi
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.
ACS Nano. 2025 Jan 28;19(3):3197-3209. doi: 10.1021/acsnano.4c09953. Epub 2025 Jan 10.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs. The BTO NPs regulate the spatial structure of PVDF segments, enhancing the local built-in electric field in the SPEs, which, in turn, facilitates the dissolution and dissociation of lithium salts. This contributes to the dual-anion-rich solvation structure with an enhanced steric effect, which significantly improves Li transport kinetics and electrochemical stability. The designed PVDF-based SPE achieves a high ionic conductivity of 4.1 × 10 S cm and a transference number of 0.70 at 25 °C. The Li//Li symmetric cells deliver an excellent critical current density of 2.4 mA cm and maintain a stable Li plating/stripping process for over 5000 h. After 1000 cycles at 2C, the LiFePO//Li cells achieve a discharge capacity of 108.3 mAh g. Furthermore, the LiNiCoMnO (NCM811)//Li cells present high capacity retention after 300 cycles at 1C with a cutoff voltage of 4.4 V. The NCM811/Graphite pouch batteries exhibit excellent cycling and safety performance. This work illustrates that the synergistic integration of functional nanoparticles with multiple lithium salts holds significant potential for the development of high-voltage SPEs.
固态聚合物电解质(SPEs)因其安全特性以及与锂金属负极的兼容性,成为锂金属电池(LMBs)颇具前景的候选材料。然而,SPEs较差的离子电导率和电化学稳定性阻碍了它们在高压固态锂金属电池(HVSSLMBs)中的应用。在此,提出了一种策略,通过将铁电钛酸钡(BTO)纳米颗粒(NPs)和双锂盐引入基于聚偏二氟乙烯(PVDF)的SPEs中,以开发一种富含双阴离子的溶剂化结构用于HVSSLMBs。BTO NPs调节PVDF链段的空间结构,增强了SPEs中的局部内建电场,这反过来又促进了锂盐的溶解和解离。这有助于形成具有增强空间效应的富含双阴离子的溶剂化结构,从而显著改善Li传输动力学和电化学稳定性。所设计的基于PVDF的SPE在25℃下实现了4.1×10 S cm的高离子电导率和0.70的迁移数。Li//Li对称电池具有2.4 mA cm的出色临界电流密度,并在超过5000小时内保持稳定的锂电镀/剥离过程。在2C下循环1000次后,LiFePO//Li电池的放电容量达到108.3 mAh g。此外,LiNiCoMnO(NCM811)//Li电池在1C、截止电压为4.4 V的条件下循环300次后仍具有高容量保持率。NCM811/石墨软包电池表现出出色的循环和安全性能。这项工作表明,功能纳米颗粒与多种锂盐的协同整合在高压SPEs的开发中具有巨大潜力。