Oh Zhen Guo, Robison Tanner Ashton, Loh Dan Hong, Ang Warren Shou Leong, Ng Jediael Zheng Ying, Li Fay-Wei, Gunn Laura Helen
School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA.
Mol Plant. 2024 Dec 2;17(12):1833-1849. doi: 10.1016/j.molp.2024.10.013. Epub 2024 Nov 2.
Hornworts are the only land plants that employ a pyrenoid to optimize Rubisco's CO fixation, yet hornwort Rubisco remains poorly characterized. Here we assembled the hornwort Anthoceros agrestis Rubisco (AaRubisco) using the Arabidopsis thaliana SynBio expression system and observed the formation of stalled intermediates, prompting us to develop a new SynBio system with A. agrestis cognate chaperones. We successfully assembled AaRubisco and Rubisco from three other hornwort species. Unlike A. thaliana Rubisco, AaRubisco assembly is not dependent on RbcX or Raf2. Kinetic characterization reveals that hornwort Rubiscos exhibit a range of catalytic rates (3-10 s), but with similar affinity (∼30 μM) and specificity (∼70) for CO. These results suggest that hornwort Rubiscos do not comply with the long-held canonical catalytic trade-off observed in other land plants, providing experimental support that Rubisco kinetics may be phylogenetically constrained. Unexpectedly, we observed a 50% increase in AaRubisco catalytic rates when RbcX was removed from our SynBio system, without any reduction in specificity. Structural biology, biochemistry, and proteomic analysis suggest that subtle differences in Rubisco large-subunit interactions, when RbcX is absent during biogenesis, increases the accessibility of active sites and catalytic turnover rate. Collectively, this study uncovered a previously unknown Rubisco kinetic parameter space and provides a SynBio chassis to expand the survey of other Rubisco kinetics. Our discoveries will contribute to developing new approaches for engineering Rubisco with superior kinetics.
角苔是唯一利用羧酶体来优化核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)固定二氧化碳功能的陆地植物,但角苔Rubisco的特性仍鲜为人知。在此,我们利用拟南芥合成生物学表达系统组装了角苔(Anthoceros agrestis)的Rubisco(AaRubisco),并观察到停滞中间体的形成,这促使我们开发一种带有角苔同源伴侣蛋白的新合成生物学系统。我们成功组装了AaRubisco以及来自其他三种角苔物种的Rubisco。与拟南芥Rubisco不同,AaRubisco的组装不依赖于RbcX或Raf2。动力学特性表明,角苔Rubisco表现出一系列催化速率(3-10 s⁻¹),但对二氧化碳具有相似的亲和力(约30 μM)和特异性(约70)。这些结果表明,角苔Rubisco不符合在其他陆地植物中长期观察到的经典催化权衡,为Rubisco动力学可能受到系统发育限制提供了实验支持。出乎意料的是,当从我们的合成生物学系统中去除RbcX时,我们观察到AaRubisco的催化速率提高了50%,而特异性没有任何降低。结构生物学、生物化学和蛋白质组学分析表明,在生物合成过程中不存在RbcX时,Rubisco大亚基相互作用的细微差异会增加活性位点的可及性和催化周转率。总的来说,这项研究发现了一个以前未知的Rubisco动力学参数空间,并提供了一个合成生物学底盘来扩展对其他Rubisco动力学的研究。我们的发现将有助于开发具有卓越动力学的工程化Rubisco的新方法。