Suppr超能文献

从化学结构预测人体药代动力学:将机理建模与机器学习相结合。

Prediction of human pharmacokinetics from chemical structure: combining mechanistic modeling with machine learning.

作者信息

Gruber Andrea, Führer Florian, Menz Stephan, Diedam Holger, Göller Andreas H, Schneckener Sebastian

机构信息

Bayer AG, Pharmaceuticals, R&D, Preclinical Modeling & Simulation, 13353 Berlin, Germany.

Bayer AG, Engineering & Technology, Applied Mathematics, 51368 Leverkusen, Germany.

出版信息

J Pharm Sci. 2023 Oct 28. doi: 10.1016/j.xphs.2023.10.035.

Abstract

Pharmacokinetics (PK) is the result of a complex interplay between compound properties and physiology, and a detailed characterization of a molecule's PK during preclinical research is key to understanding the relationship between applied dose, exposure, and pharmacological effect. Predictions of human PK based on the chemical structure of a compound are highly desirable to avoid advancing compounds with unfavorable properties early on and to reduce animal testing, but data to train such models are scarce. To address this problem, we combine well-established physiologically based pharmacokinetic models with Deep Learning models for molecular property prediction into a hybrid model to predict PK parameters for small molecules directly from chemical structure. Our model predicts exposure after oral and intravenous administration with fold change errors of 1.87 and 1.86, respectively, in healthy subjects and 2.32 and 2.23, respectively, in patients with various diseases. Unlike pure Deep Learning models, the hybrid model can predict endpoints on which it was not trained. We validate this extrapolation capability by predicting full concentration-time profiles for compounds with published PK data. Our model enables early selection and prioritization of the most promising drug candidates, which can lead to a reduction in animal testing during drug discovery and development.

摘要

药代动力学(PK)是化合物性质与生理学之间复杂相互作用的结果,在临床前研究期间对分子PK进行详细表征是理解给药剂量、暴露量和药理作用之间关系的关键。基于化合物化学结构预测人体PK非常有必要,这样可以避免早期推进具有不良性质的化合物,并减少动物试验,但用于训练此类模型的数据却很稀缺。为了解决这个问题,我们将成熟的基于生理学的药代动力学模型与用于分子性质预测的深度学习模型相结合,形成一个混合模型,直接从化学结构预测小分子的PK参数。我们的模型预测健康受试者口服和静脉给药后的暴露量,倍数变化误差分别为1.87和1.86,在患有各种疾病的患者中分别为2.32和2.23。与纯深度学习模型不同,混合模型可以预测其未训练的终点。我们通过预测具有已发表PK数据的化合物的完整浓度-时间曲线来验证这种外推能力。我们的模型能够对最有前景的候选药物进行早期筛选和排序,这可以减少药物发现和开发过程中的动物试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验