Suppr超能文献

TEMPO氧化纳米纤维素作为持续抗菌递送的潜在载体。

TEMPO-oxidized nanofibrillated cellulose as potential carrier for sustained antibacterial delivery.

作者信息

Thodikayil Aiswarya Thattaru, Yadav Ajay, Hariprasad P, Saha Sampa

机构信息

Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.

Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

出版信息

Int J Biol Macromol. 2023 Oct 28:127604. doi: 10.1016/j.ijbiomac.2023.127604.

Abstract

Designing a suitable, cost-effective nanocarrier with an ability to capture and deliver antibiotics for restricting microbial spread remains an unmet need. A simple two-stepped strategy involving citric acid-induced hydrolysis of cellulose pulp (NFC) followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) mediated oxidation to obtain carboxylated nano fibrillated cellulose (TNFC-5) with high carboxyl content (1.12 mmol/g) has been explored. TNFC-5 so obtained was able to capture remarkable extent of antibiotics (drug loading (DL) > 40 % and entrapment efficiency (EE) >80 %) irrespective of their hydrophilicity as in, triclosan (hydrophobic) and ampicillin sodium (hydrophilic). In silico molecular docking study revealed the excess carboxyl content in nanocellulose imparted the strongest binding affinity to antibiotics via H-bonding. A slower and sustained release of triclosan was observed for TNFC-5 than that of NFC, reiterating the enhanced binding efficiency of the drugs with TNFC-5. Well-dispersed triclosan loaded TNFC-5 displayed sustained antibacterial activity against Escherichia coli and Staphylococcus aureus up to one week. Thus, TNFC-5 has been demonstrated as a green, cheap, and eco-friendly alternative to the other biodegradable nanocarriers for carrying antibiotics with high DL and EE, thereby reducing the wastage of expensive drugs while ensuring a sustained antibacterial effect. Our study established that the drug loaded nanofibers (TNFC-5) might act as a promising candidate to penetrate through biofilm for treating serious bacterial infections by retarding their growth and eventually eradicating bacterial colonies.

摘要

设计一种合适的、具有成本效益的纳米载体,使其能够捕获和递送抗生素以限制微生物传播,这一需求仍未得到满足。本文探索了一种简单的两步策略,即先用柠檬酸诱导纤维素纸浆(NFC)水解,再通过TEMPO(2,2,6,6-四甲基哌啶-1-氧基自由基)介导氧化,以获得具有高羧基含量(1.12 mmol/g)的羧化纳米纤维素(TNFC-5)。如此获得的TNFC-5能够捕获相当量的抗生素(载药量(DL)>40%,包封率(EE)>80%),无论抗生素的亲水性如何,如三氯生(疏水性)和氨苄西林钠(亲水性)。计算机模拟分子对接研究表明,纳米纤维素中过量的羧基含量通过氢键赋予了与抗生素最强的结合亲和力。观察到TNFC-5对三氯生的释放比NFC慢且具有缓释性,这再次证明了药物与TNFC-5的结合效率更高。分散良好的负载三氯生的TNFC-5对大肠杆菌和金黄色葡萄球菌显示出长达一周的持续抗菌活性。因此,TNFC-5已被证明是一种绿色、廉价且环保的替代品,可替代其他可生物降解的纳米载体来携带高载药量和高包封率的抗生素,从而减少昂贵药物的浪费,同时确保持续的抗菌效果。我们的研究表明,负载药物的纳米纤维(TNFC-5)可能是一种有前途的候选物,可穿透生物膜来治疗严重的细菌感染,通过抑制细菌生长并最终根除细菌菌落来实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验