Onisiforou Anna, Zanos Panos
Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus.
Comput Struct Biotechnol J. 2024 Oct 10;23:3610-3624. doi: 10.1016/j.csbj.2024.10.011. eCollection 2024 Dec.
Comorbid diseases complicate patient outcomes and escalate healthcare costs, necessitating the need for a deeper mechanistic understanding. Neuropsychiatric disorders (NPDs) such as Neurotic Disorder, Major Depression, Bipolar Disorder, Anxiety Disorder, and Schizophrenia significantly exacerbate Type 2 Diabetes Mellitus (DM2), often leading to suboptimal treatment outcomes. The neurobiological mechanisms underlying this comorbidity remain poorly understood. To address this gap, we developed a novel pathway-based network computational framework to identify critical shared disease mechanisms between DM2 and these five prevalent comorbid NPDs. Our approach involves reconstructing an integrated DM2 ∩ NPDs KEGG pathway-pathway network and employs two complementary analytical methods, including the "minimum path to comorbidity" method to identify the shortest path fostering comorbid development. This analysis uncovered shared pathways like the PI3K-Akt signaling pathway and highlighted key nodes such as calcium signaling, MAPK, estrogen signaling, and apoptosis pathways. Dysregulation of these pathways likely contributes to the development of DM2-NPDs comorbidity. These findings have significant clinical implications, as they identify promising therapeutic targets that could lead to more effective treatments addressing both DM2 and NPDs simultaneously. Our model not only elucidates the intricate molecular interactions driving this comorbidity but also identifies promising therapeutic targets, paving the way for innovative treatment strategies. Additionally, the framework developed in this study can be adapted to study other complex comorbid conditions, advancing personalized medicine for comorbidities and improving patient care.
合并症会使患者的治疗结果复杂化并增加医疗成本,因此有必要进行更深入的机制研究。诸如神经症、重度抑郁症、双相情感障碍、焦虑症和精神分裂症等神经精神疾病(NPDs)会显著加重2型糖尿病(DM2),常常导致治疗效果欠佳。这种合并症背后的神经生物学机制仍知之甚少。为了填补这一空白,我们开发了一种基于通路的新型网络计算框架,以识别DM2与这五种常见合并性NPDs之间关键的共同疾病机制。我们的方法包括重建一个整合的DM2 ∩ NPDs KEGG通路-通路网络,并采用两种互补的分析方法,包括“合并症的最短路径”方法来识别促进合并症发展的最短路径。该分析揭示了如PI3K-Akt信号通路等共同通路,并突出了钙信号、MAPK、雌激素信号和凋亡通路等关键节点。这些通路的失调可能导致DM2-NPDs合并症的发展。这些发现具有重要的临床意义,因为它们确定了有前景的治疗靶点,可能带来同时治疗DM2和NPDs的更有效疗法。我们的模型不仅阐明了驱动这种合并症的复杂分子相互作用,还确定了有前景的治疗靶点,为创新治疗策略铺平了道路。此外,本研究中开发的框架可用于研究其他复杂的合并症情况,推动合并症的个性化医疗并改善患者护理。