Suppr超能文献

通过生物信息学和体内实验探索2型糖尿病合并重度抑郁症的潜在诊断标志物和治疗靶点。

Exploring potential diagnostic markers and therapeutic targets for type 2 diabetes mellitus with major depressive disorder through bioinformatics and in vivo experiments.

作者信息

Zhang Yikai, Wu Linyue, Zheng Chuanjie, Xu Huihui, Lin Weiye, Chen Zheng, Cao Lingyong, Qu Yiqian

机构信息

School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.

Institute of Orthopedics and Traumatology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.

出版信息

Sci Rep. 2025 May 15;15(1):16834. doi: 10.1038/s41598-025-01175-z.

Abstract

Type 2 diabetes mellitus (T2DM) and Major depressive disorder (MDD) act as risk factors for each other, and the comorbidity of both significantly increases the all-cause mortality rate. Therefore, studying the diagnosis and treatment of diabetes with depression (DD) is of great significance. In this study, we progressively identified hub genes associated with T2DM and depression through WGCNA analysis, PPI networks, and machine learning, and constructed ROC and nomogram to assess their diagnostic efficacy. Additionally, we validated these genes using qRT-PCR in the hippocampus of DD model mice. The results indicate that UBTD1, ANKRD9, CNN2, AKT1, and CAPZA2 are shared hub genes associated with diabetes and depression, with ANKRD9, CNN2 and UBTD1 demonstrating favorable diagnostic predictive efficacy. In the DD model, UBTD1 (p > 0.05) and ANKRD9 (p < 0.01) were downregulated, while CNN2 (p < 0.001), AKT1 (p < 0.05), and CAPZA2 (p < 0.01) were upregulated. We have discussed their mechanisms of action in the pathogenesis and therapy of DD, suggesting their therapeutic potential, and propose that these genes may serve as prospective diagnostic candidates for DD. In conclusion, this work offers new insights for future research on DD.

摘要

2型糖尿病(T2DM)和重度抑郁症(MDD)互为危险因素,二者合并存在会显著增加全因死亡率。因此,研究糖尿病伴抑郁症(DD)的诊断和治疗具有重要意义。在本研究中,我们通过加权基因共表达网络分析(WGCNA)、蛋白质-蛋白质相互作用(PPI)网络和机器学习逐步鉴定出与T2DM和抑郁症相关的枢纽基因,并构建ROC曲线和列线图以评估其诊断效能。此外,我们在DD模型小鼠的海马体中使用qRT-PCR验证了这些基因。结果表明,UBTD1、ANKRD9、CNN2、AKT1和CAPZA2是与糖尿病和抑郁症相关的共同枢纽基因,其中ANKRD9、CNN2和UBTD1显示出良好的诊断预测效能。在DD模型中,UBTD1(p>0.05)和ANKRD9(p<0.01)表达下调,而CNN2(p<0.001)、AKT1(p<0.05)和CAPZA2(p<0.01)表达上调。我们讨论了它们在DD发病机制和治疗中的作用机制,提示了它们的治疗潜力,并提出这些基因可能作为DD潜在的诊断标志物。总之,这项工作为未来DD的研究提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb7e/12078483/70fc86c01756/41598_2025_1175_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验