Suppr超能文献

鼓膜麦克风:一种聚偏二氟乙烯悬臂式麦克风。

The UmboMic: A PVDF Cantilever Microphone.

作者信息

Yeiser Aaron J, Wawrzynek Emma F, Zhang John Z, Graf Lukas, McHugh Christopher I, Kymissis Ioannis, Olson Elizabeth S, Lang Jeffrey H, Nakajima Hideko Heidi

机构信息

MIT Electrical Engineering and Computer Science (EECS) Department, Cambridge, MA, 02139.

MIT Mechanical Engineering Department.

出版信息

J Micromech Microeng. 2024 Aug;34(8). doi: 10.1088/1361-6439/ad5c6d. Epub 2024 Jul 18.

Abstract

OBJECTIVE

We present the "UmboMic," a prototype piezoelectric cantilever microphone designed for future use with totally-implantable cochlear implants.

METHODS

The UmboMic sensor is made from polyvinylidene difluoride (PVDF) because of its low Young's modulus and biocompatibility. The sensor is designed to fit in the middle ear and measure the motion of the underside of the eardrum at the umbo. To maximize its performance, we developed a low noise charge amplifier in tandem with the UmboMic sensor. This paper presents the performance of the UmboMic sensor and amplifier in fresh cadaveric human temporal bones.

RESULTS

When tested in human temporal bones, the UmboMic apparatus achieves an equivalent input noise of 32.3 dB SPL over the frequency range 100 Hz to 7 kHz, good linearity, and a flat frequency response to within 10 dB from about 100 Hz to 6 kHz.

CONCLUSION

These results demonstrate the feasibility of a PVDF-based microphone when paired with a low-noise amplifier. The reported UmboMic apparatus is comparable in performance to a conventional hearing aid microphone.

SIGNIFICANCE

The proof-of-concept UmboMic apparatus is a promising step towards creating a totally-implantable cochlear implant. A completely internal system would enhance the quality of life of cochlear implant users.

摘要

目的

我们展示了“鼓膜麦克风(UmboMic)”,这是一种为未来与完全植入式人工耳蜗配合使用而设计的压电悬臂式麦克风。

方法

UmboMic传感器由聚偏二氟乙烯(PVDF)制成,因其杨氏模量低且具有生物相容性。该传感器设计用于安装在中耳,测量鼓膜脐部下方的运动。为了使其性能最大化,我们与UmboMic传感器协同开发了一种低噪声电荷放大器。本文介绍了UmboMic传感器和放大器在新鲜人类尸体颞骨中的性能。

结果

在人类颞骨中进行测试时,UmboMic装置在100Hz至7kHz的频率范围内实现了32.3dB SPL的等效输入噪声、良好的线性度,并且在约100Hz至6kHz的范围内频率响应平坦度在10dB以内。

结论

这些结果证明了基于PVDF的麦克风与低噪声放大器配合使用的可行性。所报道的UmboMic装置在性能上与传统助听器麦克风相当。

意义

概念验证的UmboMic装置是朝着创建完全植入式人工耳蜗迈出的有希望的一步。一个完全内置的系统将提高人工耳蜗使用者的生活质量。

相似文献

1
The UmboMic: A PVDF Cantilever Microphone.
J Micromech Microeng. 2024 Aug;34(8). doi: 10.1088/1361-6439/ad5c6d. Epub 2024 Jul 18.
2
The UmboMic: A PVDF Cantilever Microphone.
ArXiv. 2023 Dec 22:arXiv:2312.14339v1.
3
Hearing protection field attenuation estimation systems and associated training for reducing workers' exposure to noise.
Cochrane Database Syst Rev. 2024 May 17;5(5):CD015066. doi: 10.1002/14651858.CD015066.pub2.
4
An Implantable Piezofilm Middle Ear Microphone: Performance in Human Cadaveric Temporal Bones.
J Assoc Res Otolaryngol. 2024 Feb;25(1):53-61. doi: 10.1007/s10162-024-00927-4. Epub 2024 Jan 18.
5
Interventions to prevent occupational noise-induced hearing loss.
Cochrane Database Syst Rev. 2017 Jul 7;7(7):CD006396. doi: 10.1002/14651858.CD006396.pub4.
8
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.
Cochrane Database Syst Rev. 2015 Sep 29;2015(9):CD009263. doi: 10.1002/14651858.CD009263.pub2.
9
Bilateral versus unilateral hearing aids for bilateral hearing impairment in adults.
Cochrane Database Syst Rev. 2017 Dec 19;12(12):CD012665. doi: 10.1002/14651858.CD012665.pub2.

引用本文的文献

本文引用的文献

1
An Implantable Piezofilm Middle Ear Microphone: Performance in Human Cadaveric Temporal Bones.
J Assoc Res Otolaryngol. 2024 Feb;25(1):53-61. doi: 10.1007/s10162-024-00927-4. Epub 2024 Jan 18.
2
An Implantable Umbo Microphone For Fully-Implantable Assistive Hearing Devices.
IEEE Sens J. 2021;2021. doi: 10.1109/sensors47087.2021.9639746. Epub 2021 Dec 17.
3
A New Floating Piezoelectric Microphone for Fully Implantable Cochlear Implants in Middle Ear.
Laryngoscope. 2024 Feb;134(2):937-944. doi: 10.1002/lary.30861. Epub 2023 Jul 8.
4
Design and Experimental Assessment of Low-Noise Piezoelectric Microelectromechanical Systems Vibration Sensors.
IEEE Sens J. 2021 Aug 15;21(16):17703-17711. doi: 10.1109/jsen.2021.3085825. Epub 2021 Jun 3.
5
A technical review and evaluation of implantable sensors for hearing devices.
Biomed Eng Online. 2018 Feb 13;17(1):23. doi: 10.1186/s12938-018-0454-z.
6
Influence of the middle ear anatomy on the performance of a membrane sensor in the incudostapedial joint gap.
Hear Res. 2013 Jul;301:35-43. doi: 10.1016/j.heares.2012.12.001. Epub 2012 Dec 12.
7
Ear-canal reflectance, umbo velocity, and tympanometry in normal-hearing adults.
Ear Hear. 2012 Jan-Feb;33(1):19-34. doi: 10.1097/AUD.0b013e31822ccb76.
8
A laboratory study on a capacitive displacement sensor as an implant microphone in totally implant cochlear hearing aid systems.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5692-5. doi: 10.1109/IEMBS.2007.4353638.
9
Testing a method for quantifying the output of implantable middle ear hearing devices.
Audiol Neurootol. 2007;12(4):265-76. doi: 10.1159/000101474. Epub 2007 Apr 2.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验