Byrne Barry J, Parenti Giancarlo, Schoser Benedikt, van der Ploeg Ans T, Do Hung, Fox Brian, Goldman Mitchell, Johnson Franklin K, Kang Jia, Mehta Nickita, Mondick John, Sheikh M Osman, Sitaraman Das Sheela, Tuske Steven, Brudvig Jon, Weimer Jill M, Mozaffar Tahseen
Department of Pediatrics in the College of Medicine, University of Florida, Gainesville, FL, United States.
Metabolic Unit, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
Front Neurol. 2024 Oct 18;15:1451512. doi: 10.3389/fneur.2024.1451512. eCollection 2024.
Enzyme replacement therapy (ERT) is the only approved disease-modifying treatment modality for Pompe disease, a rare, inherited metabolic disorder caused by a deficiency in the acid -glucosidase (GAA) enzyme that catabolizes lysosomal glycogen. First-generation recombinant human GAA (rhGAA) ERT (alglucosidase alfa) can slow the progressive muscle degeneration characteristic of the disease. Still, most patients experience diminished efficacy over time, possibly because of poor uptake into target tissues. Next-generation ERTs aim to address this problem by increasing bis-phosphorylated high mannose (bis-M6P) -glycans on rhGAA as these moieties have sufficiently high receptor binding affinity at the resultant low interstitial enzyme concentrations after dosing to drive uptake by the cation-independent mannose 6-phosphate receptor on target cells. However, some approaches introduce bis-M6P onto rhGAA via non-natural linkages that cannot be hydrolyzed by natural human enzymes and thus inhibit the endolysosomal glycan trimming necessary for complete enzyme activation after cell uptake. Furthermore, all rhGAA ERTs face potential inactivation during intravenous delivery (and subsequent non-productive clearance) as GAA is an acid hydrolase that is rapidly denatured in the near-neutral pH of the blood. One new therapy, cipaglucosidase alfa plus miglustat, is hypothesized to address these challenges by combining an enzyme enriched with naturally occurring bis-M6P -glycans with a small-molecule stabilizer. Here, we investigate this hypothesis by analyzing published and new data related to the mechanism of action of the enzyme and stabilizer molecule. Based on an extensive collection of , preclinical, and clinical data, we conclude that cipaglucosidase alfa plus miglustat successfully addresses each of these challenges to offer meaningful advantages in terms of pharmacokinetic exposure, target-cell uptake, endolysosomal processing, and clinical benefit.
酶替代疗法(ERT)是唯一被批准用于治疗庞贝病的疾病修饰治疗方式,庞贝病是一种罕见的遗传性代谢紊乱疾病,由分解溶酶体糖原的酸性α-葡萄糖苷酶(GAA)缺乏引起。第一代重组人GAA(rhGAA)ERT(阿糖苷酶α)可以减缓该疾病特有的进行性肌肉退化。然而,大多数患者随着时间推移疗效会降低,这可能是因为靶组织摄取不良。新一代ERT旨在通过增加rhGAA上的双磷酸化高甘露糖(bis-M6P)聚糖来解决这个问题,因为这些部分在给药后产生的低间质酶浓度下具有足够高的受体结合亲和力,以驱动靶细胞上的阳离子非依赖性甘露糖6-磷酸受体摄取。然而,一些方法通过非天然连接将bis-M6P引入rhGAA,而这些连接不能被天然人类酶水解,因此会抑制细胞摄取后完全酶激活所需的内溶酶体聚糖修剪。此外,所有rhGAA ERT在静脉给药期间(以及随后的非生产性清除)都面临潜在的失活,因为GAA是一种酸性水解酶,在血液接近中性的pH值下会迅速变性。一种新的疗法,即西帕糖苷酶α加米格列醇,被假设通过将富含天然存在的bis-M6P聚糖的酶与小分子稳定剂结合来应对这些挑战。在这里,我们通过分析与该酶和稳定剂分子作用机制相关的已发表和新数据来研究这一假设。基于广泛收集的临床前和临床数据,我们得出结论,西帕糖苷酶α加米格列醇成功应对了每一项挑战,在药代动力学暴露、靶细胞摄取、内溶酶体加工和临床益处方面提供了有意义的优势。