Suppr超能文献

基于免疫相关基因的卵巢癌预后模型的鉴定和验证。

Identification and validation of a prognostic model based on immune-related genes in ovarian carcinoma.

机构信息

Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

National Clinical Research Center for Cancer, Tianjin, China.

出版信息

PeerJ. 2024 Oct 31;12:e18235. doi: 10.7717/peerj.18235. eCollection 2024.

Abstract

BACKGROUND

A novel valuable prognostic model has been developed on the basis of immune-related genes (IRGs), which could be used to estimate overall survival (OS) in ovarian cancer (OC) patients in The Cancer Genome Atlas (TCGA) dataset and the International Cancer Genome Consortium (ICGC) dataset.

METHODS

This prognostic model was engineered by employing LASSO regression in training cohort (TCGA dataset). The corresponding growth predictive values of this model for individualized survival was evaluated using survival analysis, receiver operating characteristic curve (ROC curve), and risk curve analysis. Combined with clinical characteristics, a model risk score nomogram for OS was well built. Thereafter, depended on the model risk score, patients were divided into high and low risk subgroups. The survival difference between these subgroups was measured using Kaplan-Meier survival method. In addition, correlations containing pathway enrichment, treatment, immune cell infiltration and the prognostic model were also analyzed. We established the ovarian cancer cell line W038 for this study and identified the performances of GBP1P1 knockdown on a series of activities including cellular proliferation, apoptosis, migration, and invasion of W038 cells .

RESULTS

We constructed a 25-genes prognostic model (TNFAIP8L3, PI3, TMEM181, GBP1P1 (LOC400759), STX18, KIF26B, MRPS11, CACNA1C, PACSIN3, GMPR, MANF, PYGB, SNRPA1, ST7L, ZBP1, BMPR1B-DT, STAC2, LINC02585, LYPD6, NSG1, ACOT13, FAM120B, LEFTY1, SULT1A2, FZD3). The areas under the curves (AUC) of 1, 2 and 3 years were 0.806, 0.773 and 0.762, in the TCGA cohort, respectively. Besides, the effectiveness of the model was verified using ICGC testing data. Univariate and multivariate Cox regression analysis exposes the risk score as an independent prognosis predictor for OS both in the TCGA and ICGC cohort. In summary, we utilized comprehensive bioinformatics analysis to build an effective prognostic gene model for OC patients. These bioinformatic results suggested that GBP1P1 could act as a novel biomarker for OC. GBP1P1 knockdown substantially inhibited the proliferation, migration, and invasion of W038 cells , and increased the percentage of apoptotic W038 cells.

CONCLUSIONS

The analyses of genetic status of patients with 25-genes model might improve the ability to predict the prognosis of patients with OC and help to select patients suit able to therapies. Immune-related gene might serve as prognostic biomarker for OC.

摘要

背景

在免疫相关基因(IRGs)的基础上开发了一种新的有价值的预后模型,可用于估计癌症基因组图谱(TCGA)数据集和国际癌症基因组联盟(ICGC)数据集中卵巢癌(OC)患者的总生存期(OS)。

方法

该预后模型是通过在训练队列(TCGA 数据集)中使用 LASSO 回归构建的。使用生存分析、接收者操作特征曲线(ROC 曲线)和风险曲线分析评估该模型对个体生存的相应预测价值。结合临床特征,建立了用于 OS 的模型风险评分列线图。此后,根据模型风险评分将患者分为高风险和低风险亚组。使用 Kaplan-Meier 生存方法测量这些亚组之间的生存差异。此外,还分析了包含通路富集、治疗、免疫细胞浸润和预后模型的相关性。我们建立了卵巢癌细胞系 W038 进行这项研究,并确定了 GBP1P1 敲低对一系列活动的影响,包括 W038 细胞的细胞增殖、凋亡、迁移和侵袭。

结果

我们构建了一个由 25 个基因组成的预后模型(TNFAIP8L3、PI3、TMEM181、GBP1P1(LOC400759)、STX18、KIF26B、MRPS11、CACNA1C、PACSIN3、GMPR、MANF、PYGB、SNRPA1、ST7L、ZBP1、BMPR1B-DT、STAC2、LINC02585、LYPD6、NSG1、ACOT13、FAM120B、LEFTY1、SULT1A2、FZD3)。在 TCGA 队列中,1、2 和 3 年的曲线下面积(AUC)分别为 0.806、0.773 和 0.762。此外,还使用 ICGC 测试数据验证了该模型的有效性。单因素和多因素 Cox 回归分析表明,风险评分在 TCGA 和 ICGC 队列中均为 OS 的独立预后预测因子。总之,我们利用综合生物信息学分析为 OC 患者建立了一种有效的预后基因模型。这些生物信息学结果表明,GBP1P1 可作为 OC 的新型生物标志物。GBP1P1 敲低可显著抑制 W038 细胞的增殖、迁移和侵袭,并增加 W038 细胞凋亡的百分比。

结论

分析 25 个基因模型患者的遗传状态可能会提高预测 OC 患者预后的能力,并有助于选择适合治疗的患者。免疫相关基因可能是 OC 的预后生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346c/11531744/473319fa70c0/peerj-12-18235-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验