Suppr超能文献

基于结构对比学习的多层次多视图网络用于 scRNA-seq 数据聚类。

Multi-level multi-view network based on structural contrastive learning for scRNA-seq data clustering.

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Chenggong, 650500, Yunnan, China.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae562.

Abstract

Clustering plays a crucial role in analyzing scRNA-seq data and has been widely used in studying cellular distribution over the past few years. However, the high dimensionality and complexity of scRNA-seq data pose significant challenges to achieving accurate clustering from a singular perspective. To address these challenges, we propose a novel approach, called multi-level multi-view network based on structural consistency contrastive learning (scMMN), for scRNA-seq data clustering. Firstly, the proposed method constructs shallow views through the $k$-nearest neighbor ($k$NN) and diffusion mapping (DM) algorithms, and then deep views are generated by utilizing the graph Laplacian filters. These deep multi-view data serve as the input for representation learning. To improve the clustering performance of scRNA-seq data, contrastive learning is introduced to enhance the discrimination ability of our network. Specifically, we construct a group contrastive loss for representation features and a structural consistency contrastive loss for structural relationships. Extensive experiments on eight real scRNA-seq datasets show that the proposed method outperforms other state-of-the-art methods in scRNA-seq data clustering tasks. Our source code has already been available at https://github.com/szq0816/scMMN.

摘要

聚类在分析 scRNA-seq 数据中起着至关重要的作用,在过去几年中,它已被广泛应用于研究细胞分布。然而,scRNA-seq 数据的高维性和复杂性给从单一角度实现准确聚类带来了重大挑战。为了解决这些挑战,我们提出了一种新的方法,称为基于结构一致性对比学习的多层次多视图网络(scMMN),用于 scRNA-seq 数据聚类。首先,该方法通过 $k$ 近邻($k$NN)和扩散映射(DM)算法构建浅层视图,然后利用图拉普拉斯滤波器生成深层视图。这些深度多视图数据作为表示学习的输入。为了提高 scRNA-seq 数据的聚类性能,引入对比学习来增强我们网络的辨别能力。具体来说,我们为表示特征构建了一个分组对比损失,为结构关系构建了一个结构一致性对比损失。在八个真实的 scRNA-seq 数据集上的广泛实验表明,该方法在 scRNA-seq 数据聚类任务中优于其他最先进的方法。我们的源代码已经在 https://github.com/szq0816/scMMN 上提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/860b/11532661/34c9b9efcce4/bbae562f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验