Knecht Siam, Morandini Paolo, Biehler-Gomez Lucie, Nogueira Luisa, Adalian Pascal, Cattaneo Cristina
Aix Marseille Université, CNRS, EFS, ADES, Marseille, 13007, France.
LABANOF (Laboratorio di Antropologia e Odontologia Forense), Department of Biomedical Science for Health, University of Milan, Via Mangiagalli 37, Milan, 20133, Italy.
Int J Legal Med. 2025 May;139(3):1371-1380. doi: 10.1007/s00414-024-03359-0. Epub 2024 Nov 4.
Biological sex estimation in forensic anthropology is a crucial topic, and the patella has shown promise in this regard due to its sexual dimorphism. This study uses 12 machine learning models for sex estimation based on three patellar measurements (maximum height, breadth, and thickness). Data was collected from 180 skeletons of a contemporary Italian population (83 males and 97 females) as well as from an independent sample of 21 forensic cases (13 males and 8 females). Statistical analyses indicated that each of the variables exhibited significant sexual dimorphism. To predict biological sex, the classifiers were built using 70% of a reference sample, then tested on the remaining 30% of the original sample and then tested again on the independent sample. The different classifiers generated accuracies varied between 0.85 and 0.91 on the reference sample and between 0.71 and 0.95 for the validation sample. SVM classifier stood out with the highest accuracy and seemed the best model for our study.This study contributes to the growing application of machine learning in forensic anthropology by being the first to apply such techniques to patellar measurements in an Italian population. It aims to enhance the accuracy and efficiency of biological sex estimation from the patella, building on promising results observed with other skeletal elements.
法医人类学中的生物性别估计是一个关键课题,而髌骨因其性别二态性在这方面显示出了前景。本研究基于三项髌骨测量值(最大高度、宽度和厚度),使用12种机器学习模型进行性别估计。数据收集自当代意大利人群的180具骨骼(83名男性和97名女性)以及21个法医案例的独立样本(13名男性和8名女性)。统计分析表明,每个变量都表现出显著的性别二态性。为了预测生物性别,使用参考样本的70%构建分类器,然后在原始样本的其余30%上进行测试,接着在独立样本上再次进行测试。不同的分类器在参考样本上的准确率在0.85至0.91之间,在验证样本上的准确率在0.71至0.95之间。支持向量机分类器表现突出,准确率最高,似乎是我们研究的最佳模型。本研究首次将此类技术应用于意大利人群的髌骨测量,为机器学习在法医人类学中的日益广泛应用做出了贡献。它旨在基于在其他骨骼元素上观察到的有前景的结果,提高从髌骨进行生物性别估计的准确性和效率。