Suppr超能文献

利用监测、流行病学和最终结果(SEER)登记数据评估非小细胞肺癌中机器学习模型的偏差和种族差异。

Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data.

作者信息

Trentz Cameron, Engelbart Jacklyn, Semprini Jason, Kahl Amanda, Anyimadu Eric, Buatti John, Casavant Thomas, Charlton Mary, Canahuate Guadalupe

机构信息

Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA.

Epidemiology Department, University of Iowa, Iowa City, Iowa, USA.

出版信息

Health Care Manag Sci. 2024 Dec;27(4):631-649. doi: 10.1007/s10729-024-09691-6. Epub 2024 Nov 4.

Abstract

BACKGROUND

Despite decades of pursuing health equity, racial and ethnic disparities persist in healthcare in America. For cancer specifically, one of the leading observed disparities is worse mortality among non-Hispanic Black patients compared to non-Hispanic White patients across the cancer care continuum. These real-world disparities are reflected in the data used to inform the decisions made to alleviate such inequities. Failing to account for inherently biased data underlying these observations could intensify racial cancer disparities and lead to misguided efforts that fail to appropriately address the real causes of health inequity.

OBJECTIVE

Estimate the racial/ethnic bias of machine learning models in predicting two-year survival and surgery treatment recommendation for non-small cell lung cancer (NSCLC) patients.

METHODS

A Cox survival model, and a LOGIT model as well as three other machine learning models for predicting surgery recommendation were trained using SEER data from NSCLC patients diagnosed from 2000-2018. Models were trained with a 70/30 train/test split (both including and excluding race/ethnicity) and evaluated using performance and fairness metrics. The effects of oversampling the training data were also evaluated.

RESULTS

The survival models show disparate impact towards non-Hispanic Black patients regardless of whether race/ethnicity is used as a predictor. The models including race/ethnicity amplified the disparities observed in the data. The exclusion of race/ethnicity as a predictor in the survival and surgery recommendation models improved fairness metrics without degrading model performance. Stratified oversampling strategies reduced disparate impact while reducing the accuracy of the model.

CONCLUSION

NSCLC disparities are complex and multifaceted. Yet, even when accounting for age and stage at diagnosis, non-Hispanic Black patients with NSCLC are less often recommended to have surgery than non-Hispanic White patients. Machine learning models amplified the racial/ethnic disparities across the cancer care continuum (which are reflected in the data used to make model decisions). Excluding race/ethnicity lowered the bias of the models but did not affect disparate impact. Developing analytical strategies to improve fairness would in turn improve the utility of machine learning approaches analyzing population-based cancer data.

摘要

背景

尽管数十年来一直在追求健康公平,但美国医疗保健领域的种族和族裔差异依然存在。具体就癌症而言,观察到的主要差异之一是,在整个癌症护理过程中,非西班牙裔黑人患者的死亡率高于非西班牙裔白人患者。这些现实世界中的差异反映在用于为缓解此类不平等现象所做决策提供信息的数据中。未能考虑这些观察结果背后存在固有偏差的数据,可能会加剧种族癌症差异,并导致误导性的努力,无法恰当地解决健康不平等的真正原因。

目的

估计机器学习模型在预测非小细胞肺癌(NSCLC)患者两年生存率和手术治疗建议方面的种族/族裔偏差。

方法

使用2000年至2018年诊断的NSCLC患者的监测、流行病学和最终结果(SEER)数据,训练了一个Cox生存模型、一个逻辑回归模型以及其他三个用于预测手术建议的机器学习模型。模型采用70/30的训练/测试分割(包括和不包括种族/族裔)进行训练,并使用性能和公平性指标进行评估。还评估了对训练数据进行过采样的效果。

结果

无论是否将种族/族裔用作预测因子,生存模型对非西班牙裔黑人患者都显示出不同的影响。包括种族/族裔的模型放大了数据中观察到的差异。在生存和手术建议模型中排除种族/族裔作为预测因子,在不降低模型性能的情况下提高了公平性指标。分层过采样策略减少了不同影响,但降低了模型的准确性。

结论

NSCLC差异是复杂且多方面的。然而,即使考虑到诊断时的年龄和阶段,NSCLC的非西班牙裔黑人患者比非西班牙裔白人患者接受手术的推荐频率更低。机器学习模型放大了整个癌症护理过程中的种族/族裔差异(这反映在用于做出模型决策的数据中)。排除种族/族裔降低了模型的偏差,但并未影响不同影响。开发提高公平性的分析策略反过来将提高分析基于人群的癌症数据的机器学习方法的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验