Suppr超能文献

预测不同种族亚组癌症死亡率的公平性。

Fairness in Predicting Cancer Mortality Across Racial Subgroups.

机构信息

Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York.

Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.

出版信息

JAMA Netw Open. 2024 Jul 1;7(7):e2421290. doi: 10.1001/jamanetworkopen.2024.21290.

Abstract

IMPORTANCE

Machine learning has potential to transform cancer care by helping clinicians prioritize patients for serious illness conversations. However, models need to be evaluated for unequal performance across racial groups (ie, racial bias) so that existing racial disparities are not exacerbated.

OBJECTIVE

To evaluate whether racial bias exists in a predictive machine learning model that identifies 180-day cancer mortality risk among patients with solid malignant tumors.

DESIGN, SETTING, AND PARTICIPANTS: In this cohort study, a machine learning model to predict cancer mortality for patients aged 21 years or older diagnosed with cancer between January 2016 and December 2021 was developed with a random forest algorithm using retrospective data from the Mount Sinai Health System cancer registry, Social Security Death Index, and electronic health records up to the date when databases were accessed for cohort extraction (February 2022).

EXPOSURE

Race category.

MAIN OUTCOMES AND MEASURES

The primary outcomes were model discriminatory performance (area under the receiver operating characteristic curve [AUROC], F1 score) among each race category (Asian, Black, Native American, White, and other or unknown) and fairness metrics (equal opportunity, equalized odds, and disparate impact) among each pairwise comparison of race categories. True-positive rate ratios represented equal opportunity; both true-positive and false-positive rate ratios, equalized odds; and the percentage of predictive positive rate ratios, disparate impact. All metrics were estimated as a proportion or ratio, with variability captured through 95% CIs. The prespecified criterion for the model's clinical use was a threshold of at least 80% for fairness metrics across different racial groups to ensure the model's prediction would not be biased against any specific race.

RESULTS

The test validation dataset included 43 274 patients with balanced demographics. Mean (SD) age was 64.09 (14.26) years, with 49.6% older than 65 years. A total of 53.3% were female; 9.5%, Asian; 18.9%, Black; 0.1%, Native American; 52.2%, White; and 19.2%, other or unknown race; 0.1% had missing race data. A total of 88.9% of patients were alive, and 11.1% were dead. The AUROCs, F1 scores, and fairness metrics maintained reasonable concordance among the racial subgroups: the AUROCs ranged from 0.75 (95% CI, 0.72-0.78) for Asian patients and 0.75 (95% CI, 0.73-0.77) for Black patients to 0.77 (95% CI, 0.75-0.79) for patients with other or unknown race; F1 scores, from 0.32 (95% CI, 0.32-0.33) for White patients to 0.40 (95% CI, 0.39-0.42) for Black patients; equal opportunity ratios, from 0.96 (95% CI, 0.95-0.98) for Black patients compared with White patients to 1.02 (95% CI, 1.00-1.04) for Black patients compared with patients with other or unknown race; equalized odds ratios, from 0.87 (95% CI, 0.85-0.92) for Black patients compared with White patients to 1.16 (1.10-1.21) for Black patients compared with patients with other or unknown race; and disparate impact ratios, from 0.86 (95% CI, 0.82-0.89) for Black patients compared with White patients to 1.17 (95% CI, 1.12-1.22) for Black patients compared with patients with other or unknown race.

CONCLUSIONS AND RELEVANCE

In this cohort study, the lack of significant variation in performance or fairness metrics indicated an absence of racial bias, suggesting that the model fairly identified cancer mortality risk across racial groups. It remains essential to consistently review the model's application in clinical settings to ensure equitable patient care.

摘要

重要性

机器学习有潜力通过帮助临床医生为严重疾病对话优先考虑患者来改变癌症护理。然而,需要评估模型在不同种族群体(即种族偏见)中的表现是否存在不平等,以避免现有种族差异加剧。

目的

评估在预测机器学习模型中是否存在种族偏见,该模型用于识别患有实体恶性肿瘤的患者在 180 天内的癌症死亡率。

设计、设置和参与者:在这项队列研究中,使用随机森林算法,利用来自西奈山健康系统癌症登记处、社会保障死亡指数和电子健康记录的数据(截至 2022 年 2 月),开发了一个用于预测 21 岁及以上癌症患者癌症死亡率的机器学习模型。队列提取时访问数据库)。2016 年 1 月至 2021 年 12 月期间诊断出患有癌症的患者。

暴露

种族类别。

主要结果和措施

主要结果是每个种族类别(亚洲人、黑人、美洲原住民、白人、其他或未知)的模型区分性能(接受者操作特征曲线下的面积 [AUROC]、F1 评分)和每个种族类别之间公平性指标(均等机会、均等机会、差异影响)的比较。真阳性率比代表均等机会;真阳性和假阳性率比,均等机会;预测阳性率比的百分比,差异影响。所有指标均以比例或比率表示,通过 95%CI 捕获变异性。该模型临床应用的预定标准是,不同种族群体的公平性指标至少为 80%,以确保模型的预测不会对任何特定种族产生偏见。

结果

测试验证数据集包括 43274 名具有平衡人口统计学特征的患者。平均(SD)年龄为 64.09(14.26)岁,其中 49.6%年龄大于 65 岁。共有 53.3%为女性;9.5%为亚洲人;18.9%为黑人;0.1%为美洲原住民;52.2%为白人;19.2%为其他或未知种族;0.1%的患者种族数据缺失。共有 88.9%的患者存活,11.1%的患者死亡。在种族亚组中,AUROCs、F1 评分和公平性指标保持合理一致:亚洲患者的 AUROCs 范围为 0.75(95%CI,0.72-0.78),黑人患者的 AUROCs 范围为 0.75(95%CI,0.73-0.77),其他或未知种族的患者的 AUROCs 为 0.77(95%CI,0.75-0.79);F1 评分,白人患者为 0.32(95%CI,0.32-0.33),黑人患者为 0.40(95%CI,0.39-0.42);均等机会比率,黑人患者与白人患者相比为 0.96(95%CI,0.95-0.98),黑人患者与其他或未知种族患者相比为 1.02(95%CI,1.00-1.04);均等机会比率,黑人患者与白人患者相比为 0.87(95%CI,0.85-0.92),黑人患者与其他或未知种族患者相比为 1.16(1.10-1.21);差异影响比率,黑人患者与白人患者相比为 0.86(95%CI,0.82-0.89),黑人患者与其他或未知种族患者相比为 1.17(95%CI,1.12-1.22)。

结论和相关性

在这项队列研究中,性能或公平性指标没有显著变化表明没有种族偏见,这表明该模型在不同种族群体中公平地识别了癌症死亡率。仍然需要定期审查模型在临床环境中的应用,以确保公平的患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47c2/11238025/f15f2f6c49ad/jamanetwopen-e2421290-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验