Institute for Diagnostic and Interventional Neuroradiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
Department of Diagnostic and Interventional Radiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
Eur Radiol Exp. 2024 Nov 4;8(1):125. doi: 10.1186/s41747-024-00524-3.
Dark-field radiography imaging exploits the wave character of x-rays to measure small-angle scattering on material interfaces, providing structural information with low radiation exposure. We explored the potential of dark-field imaging of bone microstructure to improve the assessment of bone strength in osteoporosis.
We prospectively examined 14 osteoporotic/osteopenic and 21 non-osteoporotic/osteopenic human cadaveric vertebrae (L2-L4) with a clinical dark-field radiography system, micro-computed tomography (CT), and spectral CT. Dark-field images were obtained in both vertical and horizontal sample positions. Bone microstructural parameters (trabecular number, Tb.N; trabecular thickness, Tb.Th; bone volume fraction, BV/TV; degree of anisotropy, DA) were measured using standard ex vivo micro-CT, while hydroxyapatite density was measured using spectral CT. Correlations were assessed using Spearman rank correlation coefficients.
The measured dark-field signal was lower in osteoporotic/osteopenic vertebrae (vertical position, 0.23 ± 0.05 versus 0.29 ± 0.04, p < 0.001; horizontal position, 0.28 ± 0.06 versus 0.34 ± 0.04, p = 0.003). The dark-field signal from the vertical position correlated significantly with Tb.N (ρ = 0.46, p = 0.005), BV/TV (ρ = 0.45, p = 0.007), DA (ρ = -0.43, p = 0.010), and hydroxyapatite density (ρ = 0.53, p = 0.010). The calculated ratio of vertical/horizontal dark-field signal correlated significantly with Tb.N (ρ = 0.43, p = 0.011), BV/TV (ρ = 0.36, p = 0.032), DA (ρ = -0.51, p = 0.002), and hydroxyapatite density (ρ = 0.42, p = 0.049).
Dark-field radiography is a feasible modality for drawing conclusions on bone microarchitecture in human cadaveric vertebral bone.
Gaining knowledge of the microarchitecture of bone contributes crucially to predicting bone strength in osteoporosis. This novel radiographic approach based on dark-field x-rays provides insights into bone microstructure at a lower radiation exposure than that of CT modalities.
Dark-field radiography can give information on bone microstructure with low radiation exposure. The dark-field signal correlated positively with bone microstructure parameters. Dark-field signal correlated negatively with the degree of anisotropy. Dark-field radiography helps to determine the directionality of trabecular loss.
暗场射线成像利用 X 射线的波动特性来测量物质界面的小角度散射,从而提供具有低辐射暴露的结构信息。我们探索了暗场成像在骨微结构中的应用潜力,以改善骨质疏松症中骨强度的评估。
我们前瞻性地检查了 14 例骨质疏松/骨量减少和 21 例非骨质疏松/骨量减少的人体尸体椎体(L2-L4),使用临床暗场射线成像系统、微计算机断层扫描(CT)和光谱 CT。在垂直和水平样本位置均获得暗场图像。使用标准的离体微 CT 测量骨微结构参数(小梁数量 Tb.N;小梁厚度 Tb.Th;骨体积分数 BV/TV;各向异性程度 DA),使用光谱 CT 测量羟磷灰石密度。使用 Spearman 秩相关系数评估相关性。
骨质疏松/骨量减少椎体的测量暗场信号较低(垂直位置,0.23±0.05 与 0.29±0.04,p<0.001;水平位置,0.28±0.06 与 0.34±0.04,p=0.003)。垂直位置的暗场信号与 Tb.N(ρ=0.46,p=0.005)、BV/TV(ρ=0.45,p=0.007)、DA(ρ=-0.43,p=0.010)和羟磷灰石密度(ρ=0.53,p=0.010)显著相关。垂直/水平暗场信号的比值与 Tb.N(ρ=0.43,p=0.011)、BV/TV(ρ=0.36,p=0.032)、DA(ρ=-0.51,p=0.002)和羟磷灰石密度(ρ=0.42,p=0.049)显著相关。
暗场射线成像术是一种可行的方法,可以推断人体尸体椎体骨的微结构。
了解骨微结构的知识对预测骨质疏松症中的骨强度至关重要。这种基于暗场 X 射线的新型放射学方法比 CT 方式具有更低的辐射暴露,可以提供骨微结构的见解。
暗场射线摄影术可以在低辐射暴露下提供有关骨微结构的信息。暗场信号与骨微结构参数呈正相关。暗场信号与各向异性程度呈负相关。暗场射线摄影术有助于确定小梁损失的方向。