Suppr超能文献

用于离散性主动脉瓣下狭窄的新型3D球体的研发。

Development of Novel 3D Spheroids for Discrete Subaortic Stenosis.

作者信息

Brimmer Sunita, Ji Pengfei, Birla Ravi K, Heinle Jeffrey S, Grande-Allen Jane K, Keswani Sundeep G

机构信息

Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA.

Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA.

出版信息

Cardiovasc Eng Technol. 2024 Dec;15(6):704-715. doi: 10.1007/s13239-024-00746-x. Epub 2024 Nov 4.

Abstract

In this study, we propose a new method for bioprinting 3D Spheroids to study complex congenital heart disease known as discrete subaortic stenosis (DSS). The bioprinter allows us to manipulate the extrusion pressure to change the size of the spheroids, and the alginate porosity increases in size over time. The spheroids are composed of human umbilical vein endothelial cells (HUVECs), and we demonstrated that pressure and time during the bioprinting process can modulate the diameter of the spheroids. In addition, we used Pluronic acid to maintain the shape and position of the spheroids. Characterization of HUVECs in the spheroids confirmed their uniform distribution and we demonstrated cell viability as a function of time. Compared to traditional 2D cell cultures, the 3D spheroids model provides more relevant physiological environments, making it valuable for drug testing and therapeutic applications.

摘要

在本研究中,我们提出了一种用于生物打印3D球体的新方法,以研究称为离散性主动脉瓣下狭窄(DSS)的复杂先天性心脏病。该生物打印机使我们能够操纵挤出压力来改变球体的大小,并且藻酸盐孔隙率会随着时间的推移而增大。这些球体由人脐静脉内皮细胞(HUVECs)组成,并且我们证明了生物打印过程中的压力和时间可以调节球体的直径。此外,我们使用普朗尼克酸来维持球体的形状和位置。对球体中HUVECs的表征证实了它们的均匀分布,并且我们证明了细胞活力是时间的函数。与传统的二维细胞培养相比,3D球体模型提供了更相关的生理环境,使其在药物测试和治疗应用方面具有价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验