Brimmer Sunita, Ji Pengfei, Birla Ravi K, Heinle Jeffrey S, Grande-Allen Jane K, Keswani Sundeep G
Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA.
Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA.
Cardiovasc Eng Technol. 2024 Dec;15(6):704-715. doi: 10.1007/s13239-024-00746-x. Epub 2024 Nov 4.
In this study, we propose a new method for bioprinting 3D Spheroids to study complex congenital heart disease known as discrete subaortic stenosis (DSS). The bioprinter allows us to manipulate the extrusion pressure to change the size of the spheroids, and the alginate porosity increases in size over time. The spheroids are composed of human umbilical vein endothelial cells (HUVECs), and we demonstrated that pressure and time during the bioprinting process can modulate the diameter of the spheroids. In addition, we used Pluronic acid to maintain the shape and position of the spheroids. Characterization of HUVECs in the spheroids confirmed their uniform distribution and we demonstrated cell viability as a function of time. Compared to traditional 2D cell cultures, the 3D spheroids model provides more relevant physiological environments, making it valuable for drug testing and therapeutic applications.
在本研究中,我们提出了一种用于生物打印3D球体的新方法,以研究称为离散性主动脉瓣下狭窄(DSS)的复杂先天性心脏病。该生物打印机使我们能够操纵挤出压力来改变球体的大小,并且藻酸盐孔隙率会随着时间的推移而增大。这些球体由人脐静脉内皮细胞(HUVECs)组成,并且我们证明了生物打印过程中的压力和时间可以调节球体的直径。此外,我们使用普朗尼克酸来维持球体的形状和位置。对球体中HUVECs的表征证实了它们的均匀分布,并且我们证明了细胞活力是时间的函数。与传统的二维细胞培养相比,3D球体模型提供了更相关的生理环境,使其在药物测试和治疗应用方面具有价值。