Suppr超能文献

CellCircLoc:用于预测和解释细胞系特异性环状RNA亚细胞定位的深度神经网络。

CellCircLoc: Deep Neural Network for Predicting and Explaining Cell Line-Specific CircRNA Subcellular Localization.

作者信息

Zeng Min, Lu Jingwei, Li Yiming, Lu Chengqian, Kan Shichao, Guo Fei, Li Min

出版信息

IEEE J Biomed Health Inform. 2025 Feb;29(2):1494-1503. doi: 10.1109/JBHI.2024.3491732. Epub 2025 Feb 10.

Abstract

The subcellular localization of circular RNAs (circRNAs) is crucial for understanding their functional relevance and regulatory mechanisms. CircRNA subcellular localization exhibits variations across different cell lines, demonstrating the diversity and complexity of circRNA regulation within distinct cellular contexts. However, existing computational methods for predicting circRNA subcellular localization often ignore the importance of cell line specificity and instead train a general model on aggregated data from all cell lines. Considering the diversity and context-dependent behavior of circRNAs across different cell lines, it is imperative to develop cell line-specific models to accurately predict circRNA subcellular localization. In the study, we proposed CellCircLoc, a sequence-based deep learning model for circRNA subcellular localization prediction, which is trained for different cell lines. CellCircLoc utilizes a combination of convolutional neural networks, Transformer blocks, and bidirectional long short-term memory to capture both sequence local features and long-range dependencies within the sequences. In the Transformer blocks, CellCircLoc uses an attentive convolution mechanism to capture the importance of individual nucleotides. Extensive experiments demonstrate the effectiveness of CellCircLoc in accurately predicting circRNA subcellular localization across different cell lines, outperforming other computational models that do not consider cell line specificity. Moreover, the interpretability of CellCircLoc facilitates the discovery of important motifs associated with circRNA subcellular localization.

摘要

环状RNA(circRNAs)的亚细胞定位对于理解其功能相关性和调控机制至关重要。circRNA亚细胞定位在不同细胞系中表现出差异,这表明在不同细胞环境中circRNA调控的多样性和复杂性。然而,现有的预测circRNA亚细胞定位的计算方法往往忽略了细胞系特异性的重要性,而是在来自所有细胞系的汇总数据上训练一个通用模型。考虑到circRNAs在不同细胞系中的多样性和依赖于上下文的行为,开发细胞系特异性模型以准确预测circRNA亚细胞定位势在必行。在这项研究中,我们提出了CellCircLoc,一种用于circRNA亚细胞定位预测的基于序列的深度学习模型,它针对不同细胞系进行训练。CellCircLoc利用卷积神经网络、Transformer模块和双向长短期记忆的组合来捕获序列中的局部特征和长程依赖性。在Transformer模块中,CellCircLoc使用注意力卷积机制来捕获单个核苷酸的重要性。大量实验证明了CellCircLoc在准确预测不同细胞系中circRNA亚细胞定位方面的有效性,优于其他不考虑细胞系特异性的计算模型。此外,CellCircLoc 的可解释性有助于发现与circRNA亚细胞定位相关的重要基序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验