Suppr超能文献

用于从头药物设计的等变3D条件扩散模型。

Equivariant 3D-Conditional Diffusion Model for De Novo Drug Design.

作者信息

Zheng Jia, Yi Hai-Cheng, You Zhu-Hong

出版信息

IEEE J Biomed Health Inform. 2025 Mar;29(3):1805-1816. doi: 10.1109/JBHI.2024.3491318. Epub 2025 Mar 6.

Abstract

De novo drug design speeds up drug discovery, mitigating its time and cost burdens with advanced computational methods. Previous work either insufficiently utilized the 3D geometric structure of the target proteins, or generated ligands in an order that was inconsistent with real physics. Here we propose an equivariant 3D-conditional diffusion model, named DiffFBDD, for generating new pharmaceutical compounds based on 3D geometric information of specific target protein pockets. DiffFBDD overcomes the underutilization of geometric information by integrating full atomic information of pockets to backbone atoms using an equivariant graph neural network. Moreover, we develop a diffusion approach to generate drugs by generating ligand fragments for specific protein pockets, which requires fewer computational resources and less generation time (65.98% 96.10% lower). DiffFBDD offers better performance than state-of-the-art models in generating ligands with strong binding affinity to specific protein pockets, while maintaining high validity, uniqueness, and novelty, with clear potential for exploring the drug-like chemical space.

摘要

从头药物设计加速了药物发现,通过先进的计算方法减轻了其时间和成本负担。先前的工作要么没有充分利用目标蛋白质的三维几何结构,要么以与真实物理不相符的顺序生成配体。在这里,我们提出了一种等变三维条件扩散模型,名为DiffFBDD,用于基于特定目标蛋白口袋的三维几何信息生成新的药物化合物。DiffFBDD通过使用等变图神经网络将口袋的完整原子信息与主链原子整合,克服了几何信息利用不足的问题。此外,我们开发了一种扩散方法,通过为特定蛋白口袋生成配体片段来生成药物,这需要更少的计算资源和更短的生成时间(降低65.98%至96.10%)。在生成与特定蛋白口袋具有强结合亲和力的配体方面,DiffFBDD比现有模型表现更好,同时保持高有效性、独特性和新颖性,在探索类药物化学空间方面具有明显潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验