Suppr超能文献

AI4ACEIP:一种基于集成学习策略,通过合并分子表示和丰富的内在序列信息来识别对ACE具有高抑制活性的食物肽的计算工具。

AI4ACEIP: A Computing Tool to Identify Food Peptides with High Inhibitory Activity for ACE by Merged Molecular Representation and Rich Intrinsic Sequence Information Based on an Ensemble Learning Strategy.

作者信息

Yang Sen, Ni Jiaqi, Xu Piao

机构信息

School of Computer Science and Artificial Intelligence, Aliyun School of Big Data School of Software, Changzhou University, Changzhou 213164, China.

The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.

出版信息

J Agric Food Chem. 2024 Nov 13;72(45):25340-25356. doi: 10.1021/acs.jafc.4c05650. Epub 2024 Nov 4.

Abstract

Hypertension is a common chronic disorder and a major risk factor for cardiovascular diseases. Angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II, causing vasoconstriction and raising blood pressure. Pharmacotherapy is the mainstay of traditional hypertension treatment, leading to various negative side effects. Some food-derived peptides can suppress ACE, named ACEIP with fewer undesirable effects. Therefore, it is crucial to seek strong dietary ACEIP to aid in hypertension treatment. In this article, we propose a new model called AI4ACEIP to identify ACEIP. AI4ACEIP uses a novel two-layer stacked ensemble architecture to predict ACEIP relying on integrated view features derived from sequence, large language models, and molecular-based information. The analysis of feature combinations reveals that four selected integrated feature pairs exhibit enhancing performance for identifying ACEIP. For finding meta models with strong abilities to learn information from integrated feature pairs, PowerShap, a feature selection method, is used to select 40 optimal feature and meta model combinations. Compared with seven state-of-the-art methods on the source and clear benchmark data sets, AI4ACEIP significantly outperformed by 8.47 to 20.65% and 5.49 to 14.42% for Matthew's correlation coefficient. In brief, AI4ACEIP is a reliable model for ACEIP prediction and is freely available at https://github.com/abcair/AI4ACEIP.

摘要

高血压是一种常见的慢性疾病,也是心血管疾病的主要风险因素。血管紧张素转换酶(ACE)将血管紧张素I转化为血管紧张素II,导致血管收缩并升高血压。药物治疗是传统高血压治疗的主要手段,但会产生各种负面副作用。一些食物来源的肽可以抑制ACE,被称为ACE抑制肽,且不良影响较少。因此,寻找强效的膳食ACE抑制肽以辅助高血压治疗至关重要。在本文中,我们提出了一种名为AI4ACEIP的新模型来识别ACE抑制肽。AI4ACEIP使用一种新颖的两层堆叠集成架构,依靠从序列、大语言模型和基于分子的信息中导出的综合视图特征来预测ACE抑制肽。对特征组合的分析表明,四个选定的综合特征对在识别ACE抑制肽方面表现出增强的性能。为了找到具有强大能力从综合特征对中学习信息的元模型,使用一种特征选择方法PowerShap来选择40个最优特征和元模型组合。在源数据集和清晰基准数据集上与七种最先进的方法相比,AI4ACEIP在马修斯相关系数方面显著优于其他方法,分别高出8.47%至20.65%和5.49%至14.42%。简而言之,AI4ACEIP是一种用于ACE抑制肽预测的可靠模型,可在https://github.com/abcair/AI-4ACEIP上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验