文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

过氧化物酶体增殖物激活受体-γ的神经保护机制:在缺氧缺血性脑白质损伤新生鼠模型中介导小胶质细胞介导的神经炎症和氧化应激的抑制作用。

The Neuroprotective Mechanisms of PPAR-γ: Inhibition of Microglia-Mediated Neuroinflammation and Oxidative Stress in a Neonatal Mouse Model of Hypoxic-Ischemic White Matter Injury.

机构信息

Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.

出版信息

CNS Neurosci Ther. 2024 Nov;30(11):e70081. doi: 10.1111/cns.70081.


DOI:10.1111/cns.70081
PMID:39496476
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11534457/
Abstract

BACKGROUND: Neuroinflammation and oxidative stress, mediated by microglial activation, hinder the development of oligodendrocytes (OLs) and delay myelination in preterm infants, leading to white matter injury (WMI) and long-term neurodevelopmental sequelae. Peroxisome proliferator-activated receptor gamma (PPAR-γ) has been reported to inhibit inflammation and oxidative stress via modulating microglial polarization in various central nervous system diseases. However, the relationship between PPAR-γ and microglial polarization in neonatal WMI is not well understood. Therefore, this study aimed to elucidate the role and mechanisms of PPAR-γ in preterm infants affected by WMI. METHODS: In this study, an in vivo hypoxia-ischemia (HI) induced brain WMI neonatal mouse model was established. The mice were administered intraperitoneally with either RSGI or GW9662 to activate or inhibit PPAR-γ, respectively. Additionally, an in vitro oxygen-glucose deprivation (OGD) cell model was established and pretreated with pcDNA 3.1-PPAR-γ or si-PPAR-γ to overexpress or silence PPAR-γ, respectively. The neuroprotective effects of PPAR-γ were investigated in vivo. Firstly, open field test, novel object recognization test, and beam-walking test were employed to assess the effects of PPAR-γ on neurobehavioral recovery. Furthermore, assessment of OLs loss and OL-maturation disorder, the number of myelinated axons, myelin thickness, synaptic deficit, activation of microglia and astrocyte, and blood-brain barrier (BBB) were used to evaluate the effects of PPAR-γ on pathological repair. The mechanisms of PPAR-γ were explored both in vivo and in vitro. Assessment of microglia polarization, inflammatory mediators, reactive oxygen species (ROS), MDA, and antioxidant enzymes was used to evaluate the anti-inflammatory and antioxidative effects of PPAR-γ activation. An assessment of HMGB1/NF-κB and NRF2/KEAP1 signaling pathway was conducted to clarify the mechanisms by which PPAR-γ influences HI-induced WMI in neonatal mice. RESULTS: Activation of PPAR-γ using RSGI significantly mitigated BBB disruption, promoted M2 polarization of microglia, inhibited activation of microglia and astrocytes, promoted OLs development, and enhanced myelination in HI-induced WMI. Conversely, inhibition of PPAR-γ using GW9662 further exacerbated the pathologic hallmark of WMI. Neurobehavioral tests revealed that neurological deficits were ameliorated by RSGI, while further aggravated by GW91662. In addition, activation of PPAR-γ significantly alleviated neuroinflammation and oxidative stress by suppressing HMGB1/NF-κB signaling pathway and activating NRF2 signaling pathway both in vivo and in vitro. Conversely, inhibition of PPAR-γ further exacerbated HI or OGD-induced neuroinflammation, oxidative stress via modulation of the same signaling pathway. CONCLUSIONS: Our findings suggest that PPAR-γ regulates microglial activation/polarization as well as subsequent neuroinflammation/oxidative stress via the HMGB1/NF-κB and NRF2/KEAP1 signaling pathway, thereby contributing to neuroprotection and amelioration of HI-induced WMI in neonatal mice.

摘要

背景:神经炎症和氧化应激通过小胶质细胞的激活介导,阻碍早产儿少突胶质细胞(OLs)的发育,并延迟髓鞘形成,导致白质损伤(WMI)和长期神经发育后遗症。过氧化物酶体增殖物激活受体 γ(PPAR-γ)已被报道通过调节小胶质细胞极化在各种中枢神经系统疾病中抑制炎症和氧化应激。然而,PPAR-γ与新生儿 WMI 中小胶质细胞极化之间的关系尚不清楚。因此,本研究旨在阐明 PPAR-γ 在受 WMI 影响的早产儿中的作用和机制。

方法:本研究建立了一种体内缺氧缺血(HI)诱导的新生鼠脑 WMI 模型。通过腹腔内给予 RSGI 或 GW9662 分别激活或抑制 PPAR-γ。此外,建立了体外氧葡萄糖剥夺(OGD)细胞模型,并通过 pcDNA 3.1-PPAR-γ 或 si-PPAR-γ 预处理分别过表达或沉默 PPAR-γ。在体内研究了 PPAR-γ 的神经保护作用。首先,采用旷场试验、新物体识别试验和走棒试验评估 PPAR-γ 对神经行为恢复的影响。此外,评估 OL 丢失和 OL 成熟障碍、髓鞘化轴突数量、髓鞘厚度、突触缺失、小胶质细胞和星形胶质细胞激活以及血脑屏障(BBB)损伤,以评估 PPAR-γ 对病理性修复的影响。在体内和体外均探讨了 PPAR-γ 的作用机制。通过评估小胶质细胞极化、炎症介质、活性氧(ROS)、MDA 和抗氧化酶来评估 PPAR-γ 激活的抗炎和抗氧化作用。通过评估 HMGB1/NF-κB 和 NRF2/KEAP1 信号通路,阐明了 PPAR-γ 影响新生鼠 HI 诱导的 WMI 的机制。

结果:使用 RSGI 激活 PPAR-γ 可显著减轻 BBB 破坏,促进小胶质细胞 M2 极化,抑制小胶质细胞和星形胶质细胞激活,促进 OLs 发育,并增强 HI 诱导的 WMI 中的髓鞘形成。相反,使用 GW9662 抑制 PPAR-γ 进一步加重了 WMI 的病理特征。神经行为测试表明,RSGI 改善了神经功能缺损,而 GW91662 进一步加重了神经功能缺损。此外,激活 PPAR-γ 通过抑制 HMGB1/NF-κB 信号通路和激活 NRF2 信号通路,在体内和体外均显著减轻了神经炎症和氧化应激。相反,抑制 PPAR-γ 通过调节相同的信号通路进一步加重了 HI 或 OGD 诱导的神经炎症和氧化应激。

结论:我们的研究结果表明,PPAR-γ 通过 HMGB1/NF-κB 和 NRF2/KEAP1 信号通路调节小胶质细胞的激活/极化以及随后的神经炎症/氧化应激,从而有助于保护神经和改善新生鼠 HI 诱导的 WMI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/81827835813b/CNS-30-e70081-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/623cac43d4d9/CNS-30-e70081-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/e54f9e9f2f61/CNS-30-e70081-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/e000e5360cee/CNS-30-e70081-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/f2a88cba8b9a/CNS-30-e70081-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/1cbc91f7bf60/CNS-30-e70081-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/1b36e7597d76/CNS-30-e70081-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/c00b0978f6ab/CNS-30-e70081-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/c27df31bbb08/CNS-30-e70081-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/9e7675cb1bc4/CNS-30-e70081-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/4de0916fca1f/CNS-30-e70081-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/81827835813b/CNS-30-e70081-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/623cac43d4d9/CNS-30-e70081-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/e54f9e9f2f61/CNS-30-e70081-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/e000e5360cee/CNS-30-e70081-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/f2a88cba8b9a/CNS-30-e70081-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/1cbc91f7bf60/CNS-30-e70081-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/1b36e7597d76/CNS-30-e70081-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/c00b0978f6ab/CNS-30-e70081-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/c27df31bbb08/CNS-30-e70081-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/9e7675cb1bc4/CNS-30-e70081-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/4de0916fca1f/CNS-30-e70081-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/11534457/81827835813b/CNS-30-e70081-g012.jpg

相似文献

[1]
The Neuroprotective Mechanisms of PPAR-γ: Inhibition of Microglia-Mediated Neuroinflammation and Oxidative Stress in a Neonatal Mouse Model of Hypoxic-Ischemic White Matter Injury.

CNS Neurosci Ther. 2024-11

[2]
FGF21 Alleviates Hypoxic-Ischemic White Matter Injury in Neonatal Mice by Mediating Inflammation and Oxidative Stress Through PPAR-γ Signaling Pathway.

Mol Neurobiol. 2025-4

[3]
Deacetylase SIRT2 Inhibition Promotes Microglial M2 Polarization Through Axl/PI3K/AKT to Alleviate White Matter Injury After Subarachnoid Hemorrhage.

Transl Stroke Res. 2024-8-5

[4]
Inosine Treatment Attenuates White Matter Injury in Neonatal Rats Exposed to Maternal Inflammation.

Neurochem Res. 2025-5-30

[5]
Hydroxysafflor yellow A attenuates the inflammatory response in cerebral ischemia-reperfusion injured mice by regulating microglia polarization per SIRT1-mediated HMGB1/NF-κB signaling pathway.

Int Immunopharmacol. 2025-2-6

[6]
Luteolin ameliorates chronic stress-induced depressive-like behaviors in mice by promoting the Arginase-1 microglial phenotype via a PPARγ-dependent mechanism.

Acta Pharmacol Sin. 2025-3

[7]
Paeoniflorin exercise-mimetic potential regulates the Nrf2/HO-1/BDNF/CREB and APP/BACE-1/NF-κB/MAPK signaling pathways to reduce cognitive impairments and neuroinflammation in amnesic mouse model.

Biomed Pharmacother. 2025-8

[8]
High mobility group box 1, a novel serotonin receptor-7 negative modulator, contributes to M2 microglial ferroptosis and neuroinflammation in post-stroke depression.

Free Radic Biol Med. 2025-9

[9]
Orexin-A Attenuates the Inflammatory Response in Sepsis-Associated Encephalopathy by Modulating Oxidative Stress and Inhibiting the ERK/NF-κB Signaling Pathway in Microglia and Astrocytes.

CNS Neurosci Ther. 2024-11

[10]
Novel GLP-1/GIP Dual Receptor Agonist Alleviates Neonatal Hypoxic-Ischemic Encephalopathy by Inhibiting TLR2/NF-κB/NLRP3 Mediated-Neuroinflammation : The role of DA5-CH in neonatal hypoxic-ischemic encephalopathy.

Neurochem Res. 2025-7-17

引用本文的文献

[1]
Exploring novel roles of lipid droplets and lipid metabolism in regulating inflammation and blood-brain barrier function in neurological diseases.

Front Neurosci. 2025-8-13

[2]
Role of astrocytes in the pathogenesis of perinatal brain injury.

Mol Med. 2025-8-13

[3]
Pharmacokinetics and tissue distribution analysis of ginsenoside Rh in rats using a novel LC-MS/MS quantification strategy.

Front Pharmacol. 2025-7-10

[4]
Synergistic Autophagy-Related Mechanisms of Protection Against Brain Aging and AD: Cellular Pathways and Therapeutic Strategies.

Pharmaceuticals (Basel). 2025-6-1

[5]
Targeting microglia polarization with Chinese herb-derived natural compounds for neuroprotection in ischemic stroke.

Front Cell Dev Biol. 2025-6-10

[6]
Protective effect of antidiabetic drugs against male infertility: evidence from Mendelian randomization.

Diabetol Metab Syndr. 2025-4-28

[7]
Traumatic brain injury: Bridging pathophysiological insights and precision treatment strategies.

Neural Regen Res. 2026-3-1

[8]
Targeting Neuroinflammation in Preterm White Matter Injury: Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes.

Cell Mol Neurobiol. 2025-3-12

本文引用的文献

[1]
Citrullinated isomer of myelin basic protein can induce inflammatory responses in astrocytes.

IBRO Neurosci Rep. 2023-12-19

[2]
Periventricular Microglia Polarization and Morphological Changes Accompany NLRP3 Inflammasome-Mediated Neuroinflammation after Hypoxic-Ischemic White Matter Damage in Premature Rats.

J Immunol Res. 2023

[3]
Alpha-asaronol promoted oligodendrocyte precursor cell differentiation and improved myelination as an activator PPARγ.

Biomed Pharmacother. 2023-7

[4]
Melatonin suppresses inflammation and blood‒brain barrier disruption in rats with vascular dementia possibly by activating the SIRT1/PGC-1α/PPARγ signaling pathway.

Inflammopharmacology. 2023-6

[5]
Myricetin attenuates hypoxic-ischemic brain damage in neonatal rats NRF2 signaling pathway.

Front Pharmacol. 2023-3-8

[6]
Muscone promotes functional recovery by facilitating microglia polarization into M2 phenotype through PPAR-γ pathway after ischemic stroke.

Cell Immunol. 2023-4

[7]
Melatonin alleviates BDE-209-induced cognitive impairment and hippocampal neuroinflammation by modulating microglia polarization via SIRT1-mediated HMGB1/TLR4/NF-κB pathway.

Food Chem Toxicol. 2023-2

[8]
Gelsemine Exerts Neuroprotective Effects on Neonatal Mice with Hypoxic-Ischemic Brain Injury by Suppressing Inflammation and Oxidative Stress via Nrf2/HO-1 Pathway.

Neurochem Res. 2023-5

[9]
Preterm Brain Injury and Neurodevelopmental Outcomes: A Meta-analysis.

Pediatrics. 2022-12-1

[10]
Neuroprotective and Anti-Inflammatory Effects of Pioglitazone on Parkinson's Disease: A Comprehensive Narrative Review of Clinical and Experimental Findings.

CNS Neurol Disord Drug Targets. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索