Loggia Spencer R, Duffield Stuart J, Braunlich Kurt, Conway Bevil R
National Eye Institute, Bethesda, Maryland 20892
Department of Neuroscience, Brown University, Providence, Rhode Island.
J Neurosci. 2025 Jan 8;45(2):e1673232024. doi: 10.1523/JNEUROSCI.1673-23.2024.
Primate vision relies on retinotopically organized cortical parcels defined by representations of hemifield (upper vs lower visual field), eccentricity (fovea vs periphery), and area (V1, V2, V3, V4). Here we test for functional signatures of these organizing principles. We used functional magnetic resonance imaging to measure responses to gratings varying in spatial frequency, color, and saturation across retinotopically defined parcels in two macaque monkeys, and we developed a Sparse Supervised Embedding (SSE) analysis to identify stimulus features that best distinguish cortical parcels from each other. Constraining the SSE model to distinguish just eccentricity representations of the voxels revealed the expected variation of spatial frequency and S-cone modulation with eccentricity. Constraining the model according to the dorsal/ventral location and retinotopic area of each voxel provided unexpected functional signatures, which we investigated further with standard univariate analyses. Posterior parcels (V1) were distinguished from anterior parcels (V4) by differential responses to chromatic and luminance contrast, especially of low-spatial-frequency gratings. Meanwhile, ventral parcels were distinguished from dorsal parcels by differential responses to chromatic and luminance contrast, especially of colors that modulate all three cone types. The dorsal/ventral asymmetry not only resembled differences between candidate dorsal and ventral subdivisions of human V4 but also extended to include all retinotopic visual areas, starting in V1 and increasing from V1 to V4. The results provide insight into the functional roles of different retinotopic areas and demonstrate the utility of SSE as a data-driven tool for generating hypotheses about cortical function and behavior.
灵长类动物的视觉依赖于按视网膜拓扑组织的皮质区域,这些区域由半视野(上视野与下视野)、离心率(中央凹与周边)和区域(V1、V2、V3、V4)的表征来定义。在此,我们测试这些组织原则的功能特征。我们使用功能磁共振成像来测量两只猕猴中跨视网膜拓扑定义区域对空间频率、颜色和饱和度变化的光栅的反应,并且我们开发了一种稀疏监督嵌入(SSE)分析来识别最能区分皮质区域的刺激特征。将SSE模型限制为仅区分体素的离心率表征,揭示了空间频率和S锥体调制随离心率的预期变化。根据每个体素的背侧/腹侧位置和视网膜拓扑区域对模型进行约束,得到了意想不到的功能特征,我们用标准单变量分析对其进行了进一步研究。后区(V1)与前区(V4)通过对色度和亮度对比度的差异反应来区分,特别是低空间频率光栅的对比度。同时,腹侧区域与背侧区域通过对色度和亮度对比度的差异反应来区分,特别是对调制所有三种锥体类型的颜色的对比度。背侧/腹侧不对称不仅类似于人类V4候选背侧和腹侧细分之间的差异,而且还扩展到包括所有视网膜拓扑视觉区域,从V1开始并从V1到V4逐渐增加。这些结果为不同视网膜拓扑区域的功能作用提供了见解,并证明了SSE作为一种数据驱动工具在生成关于皮质功能和行为的假设方面的效用。