Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA.
Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
Nat Commun. 2021 Aug 30;12(1):5181. doi: 10.1038/s41467-021-25431-8.
Functional magnetic resonance imaging (fMRI) has become an indispensable tool for investigating the human brain. However, the inherently poor signal-to-noise-ratio (SNR) of the fMRI measurement represents a major barrier to expanding its spatiotemporal scale as well as its utility and ultimate impact. Here we introduce a denoising technique that selectively suppresses the thermal noise contribution to the fMRI experiment. Using 7-Tesla, high-resolution human brain data, we demonstrate improvements in key metrics of functional mapping (temporal-SNR, the detection and reproducibility of stimulus-induced signal changes, and accuracy of functional maps) while leaving the amplitude of the stimulus-induced signal changes, spatial precision, and functional point-spread-function unaltered. We demonstrate that the method enables the acquisition of ultrahigh resolution (0.5 mm isotropic) functional maps but is also equally beneficial for a large variety of fMRI applications, including supra-millimeter resolution 3- and 7-Tesla data obtained over different cortical regions with different stimulation/task paradigms and acquisition strategies.
功能磁共振成像(fMRI)已成为研究人类大脑不可或缺的工具。然而,fMRI 测量固有的信噪比(SNR)较差,这是限制其时空尺度扩展以及功能和最终影响的主要障碍。在这里,我们引入了一种降噪技术,可选择性地抑制 fMRI 实验中的热噪声贡献。我们使用 7 特斯拉、高分辨率的人脑数据,证明了在保持刺激引起的信号变化的幅度、空间精度和功能点扩散函数不变的情况下,关键功能映射指标(时间 SNR、刺激诱导信号变化的检测和可重复性以及功能图的准确性)得到了改善。我们证明该方法能够采集超高分辨率(0.5 毫米各向同性)的功能图,但对于各种 fMRI 应用也同样有益,包括使用不同的刺激/任务范式和采集策略在不同皮质区域获得的超毫米分辨率 3 特斯拉和 7 特斯拉数据。