Suppr超能文献

基于机器学习的摄影测量节理粗糙度系数(JRC)精度优化。

Machine learning-based optimization of photogrammetric JRC accuracy.

作者信息

Yang Qinzheng, Li Ang, Liu Yipeng, Wang Hongtian, Leng Zhendong, Deng Fei

机构信息

School of Highway, Chang'an University, Xi'an, 710064, People's Republic of China.

School of Energy and Electrical Engineering, Chang'an University, Xi'an, 710064, People's Republic of China.

出版信息

Sci Rep. 2024 Nov 4;14(1):26608. doi: 10.1038/s41598-024-77054-w.

Abstract

To improve the accuracy of photogrammetric joint roughness coefficient (JRC) estimation, this study proposes two optimization models based on ground sample distance (GSD), point density, and the root mean square error (RMSE) of checkpoints. First, an algorithm that automatically generates spatial positions for equipment based on the convergence strategy was developed, using principles of Structure from Motion and Multi-View Stereo (SfM-MVS) and the shooting parameter selection algorithm (SPSA). Second, a portable positioning plate containing ground control points and checkpoints was designed based on optical principles, and a moving camera capture strategy guided by SPSA was proposed. Combining SPSA, portable positioning plate, and moving camera capture strategy, a photogrammetric experiment for small-scale rock samples in the field was conducted, collecting 48 datasets with different shooting parameters. Subsequently, a dataset incorporating GSD, point density, RMSE, and three JRC estimation metrics was established, revealing their correlations and sensitivities. Using seven machine learning algorithms, optimization models for photogrammetric JRC accuracy were developed, with Linear Multidimensional Regression and Gaussian Process Regression models improving JRC accuracy by an average of 85.73%. Finally, the applicability and limitations of the newly proposed method were further discussed.

摘要

为提高摄影测量节理粗糙度系数(JRC)估计的准确性,本研究基于地面采样距离(GSD)、点密度和检查点的均方根误差(RMSE)提出了两种优化模型。首先,利用运动结构和多视图立体视觉(SfM-MVS)原理以及射击参数选择算法(SPSA),开发了一种基于收敛策略自动生成设备空间位置的算法。其次,基于光学原理设计了一种包含地面控制点和检查点的便携式定位板,并提出了一种由SPSA引导的移动相机拍摄策略。结合SPSA、便携式定位板和移动相机拍摄策略,对野外小尺度岩石样本进行了摄影测量实验,收集了48组不同拍摄参数的数据集。随后,建立了一个包含GSD、点密度、RMSE和三个JRC估计指标的数据集,揭示了它们之间的相关性和敏感性。使用七种机器学习算法,开发了摄影测量JRC精度的优化模型,线性多维回归和高斯过程回归模型使JRC精度平均提高了85.73%。最后,进一步讨论了新提出方法的适用性和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/775f/11535202/547d6602034c/41598_2024_77054_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验