Department of Computer Science and Engineering, United International University, United City, Vatara, 1200, Dhaka, Bangladesh.
Department of Computer Science and Engineering, Military Institute of Science and Technology, Mirpur Cantonment, Dhaka, 1216, Bangladesh.
Sci Rep. 2024 Nov 4;14(1):26645. doi: 10.1038/s41598-024-77808-6.
The study of whether life exists, is extinct, or not depends on various sophisticated experimental studies, as many different signatures of life can be used. The experimental procedures that can be performed to identify life can be further restricted by time, resources, and mobility constraints. Therefore, any research analyzing the presence of extraterrestrial life must be precise and unambiguous. This research focuses on the objective of the extraterrestrial life detection domain and seeks to provide an efficient protocol that can produce life detection decisions based on empirical data obtained through chemical analysis under time and resource-constrained conditions. While the majority of existing frameworks in this field are designed to identify biomolecules, our goal is to accomplish the same with minimal operational expense and mission complexity. We argue that the thoughtful integration of multiple biomolecular detections with lesser complexity and a robust framework can improve overall mission performance by satisfying the necessary time and resource constraints. In this study, a rapid multiple biomolecules-based life detection protocol (MBLDP-R) from soil samples is developed from scratch and embedded in an operational scientific rover subsystem targeted for planetary analysis missions. The study uses artificial biomolecule samples and simulated extraterrestrial environments to illustrate the suggested protocol's end-to-end process. First, we list a few significant biomolecules, including lipids, proteins, carbohydrates, nucleic acids, ammonia, and pigments. Then, a weighted qualitative test scoring is applied to sort out the best test method for the finally selected biomolecules which are used as operational analogue to showcase the protocol's in-situ analysis and decision-making capabilities. Based on the suitable biomolecules, a scientific exploration subsystem is developed, and the implemented protocol is built to perform onboard sample analysis. Evaluation results show that: (1) the proposed MBLDP-R protocol could effectively predict the classes with an average f1-score of 98.65% (macro) and 90.00% (micro), (2) the area under the Receiver Operating Characteristics (AUC-ROC) curve shows the sample categories to be correctly predicted 92% of the time (97% for Extant, 88% for Extinct, and 92% in the case of NPL), and (3) the protocol is time-efficient with an average completion time of 17.60 min, demonstrating the protocol's rapid nature in detecting biosignatures in soil samples. The research outcome yields useful additional data for related future studies, particularly in the design of scientific frameworks for mission-specific requirements with limited resources while also serving as a reference point for constraint evaluation methods for similar systems.
这项研究旨在确定生命是否存在、已经灭绝还是尚未被发现,这取决于各种复杂的实验研究,因为可以使用许多不同的生命特征来进行判断。可以进一步根据时间、资源和移动性限制来限制用于识别生命的实验程序。因此,任何分析外星生命存在的研究都必须是精确和明确的。本研究专注于外星生命探测领域的目标,并寻求提供一种有效的协议,该协议可以根据在时间和资源受限的条件下通过化学分析获得的经验数据来做出生命探测决策。虽然该领域的大多数现有框架旨在识别生物分子,但我们的目标是以最小的运营费用和任务复杂性来实现相同的目标。我们认为,通过深思熟虑地将多个生物分子检测与较少的复杂性和强大的框架相结合,可以通过满足必要的时间和资源限制来提高整体任务性能。在这项研究中,从土壤样本中从零开始开发了一种快速的基于多种生物分子的生命检测协议(MBLDP-R),并将其嵌入针对行星分析任务的运行科学漫游者子系统中。该研究使用人工生物分子样本和模拟的外星环境来说明所建议协议的端到端流程。首先,我们列出了一些重要的生物分子,包括脂质、蛋白质、碳水化合物、核酸、氨和色素。然后,应用加权定性测试评分来对最佳测试方法进行排序,最终选择的生物分子将作为操作模拟来展示协议的原位分析和决策能力。根据合适的生物分子,开发了一个科学探索子系统,并构建了实施协议以进行 onboard 样本分析。评估结果表明:(1)所提出的 MBLDP-R 协议能够有效地预测类别,平均 f1 得分为 98.65%(宏)和 90.00%(微);(2)接收者操作特征曲线下的面积(AUC-ROC)表明,样本类别有 92%的时间被正确预测(Extant 为 97%,Extinct 为 88%,NPL 为 92%);(3)该协议具有高效性,平均完成时间为 17.60 分钟,表明该协议在检测土壤样本中的生物特征方面具有快速的特点。该研究结果为相关的未来研究提供了有用的附加数据,特别是在设计针对特定任务的科学框架时,这些框架具有有限的资源,同时也为类似系统的约束评估方法提供了参考点。