Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, CH-1007, Switzerland.
University of Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, Gradignan, F-33170, France.
Sci Rep. 2024 Nov 4;14(1):26707. doi: 10.1038/s41598-024-76769-0.
Ultra-high dose rate FLASH radiotherapy, a promising cancer treatment approach, offers the potential to reduce healthy tissue damage during radiotherapy. As the mechanisms underlying this process remain unknown, several hypotheses have been proposed, including the altered production of radio-induced species under ultra-high dose rate (UHDR) conditions. This study explores realistic irradiation scenarios with various dose-per-pulse and investigates the role of pulse temporal structure. Using the Geant4 toolkit and its Geant4-DNA extension, we modeled the Oriatron eRT6 linac, a FLASH-validated electron beam, and conducted simulations covering four distinct dose-per-pulse scenarios - 0.17 Gy, 1 Gy, 5 Gy, and 10 Gy - all featuring a 1.8 µs pulse duration. Results show close agreement between simulated and experimental dose profiles in water, validating the eRT6 model for Geant4-DNA simulations. We observed important changes in the temporal evolution of certain species, such as the earlier fall in hydroxyl radicals ([Formula: see text]) and reduced production and lifetime of superoxide ([Formula: see text]) with higher dose-per-pulse levels. The pulse temporal structure did not influence the long-term evolution of species. Our findings encourage further investigation into different irradiation types, such as multi-pulse configurations, and emphasize the need to add components in water to account for relevant cellular processes.
超高剂量率 FLASH 放疗是一种很有前途的癌症治疗方法,有望减少放疗过程中对健康组织的损伤。由于这一过程的机制尚不清楚,因此提出了几种假设,包括在超高剂量率(UHDR)条件下,放射性诱导物质的产生发生改变。本研究探讨了具有不同脉冲剂量的现实照射场景,并研究了脉冲时间结构的作用。我们使用 Geant4 工具包及其 Geant4-DNA 扩展,对 Oriatron eRT6 直线加速器进行建模,该加速器是经过 FLASH 验证的电子束,并对四个不同的脉冲剂量场景进行了模拟 - 0.17 Gy、1 Gy、5 Gy 和 10 Gy - 所有场景的脉冲持续时间均为 1.8 µs。结果表明,在水中模拟和实验剂量分布之间具有很好的一致性,验证了 eRT6 模型在 Geant4-DNA 模拟中的有效性。我们观察到某些物质的时间演化发生了重要变化,例如羟基自由基 ([Formula: see text]) 的更早下降以及超氧化物 ([Formula: see text]) 的产生和寿命减少,这与更高的脉冲剂量水平有关。脉冲时间结构不会影响物质的长期演化。我们的研究结果鼓励进一步研究不同的照射类型,例如多脉冲配置,并强调需要在水中添加组件以考虑相关的细胞过程。