Suppr超能文献

基于生物信息学和机器学习探究人类免疫缺陷病毒和猴痘病毒合并感染的常见发病机制和候选枢纽基因。

Exploration of common pathogenesis and candidate hub genes between HIV and monkeypox co-infection using bioinformatics and machine learning.

机构信息

Clinical Center of HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Jingshun East Street, Chaoyang District, Beijing, 100015, China.

Division of Medical Record and Statistics, Beijing Ditan Hospital, Capital Medical University, Beijing, China.

出版信息

Sci Rep. 2024 Nov 4;14(1):26701. doi: 10.1038/s41598-024-78540-x.

Abstract

This study explored the pathogenesis of human immunodeficiency virus (HIV) and monkeypox co-infection, identifying candidate hub genes and potential drugs using bioinformatics and machine learning. Datasets for HIV (GSE 37250) and monkeypox (GSE 24125) were obtained from the GEO database. Common differentially expressed genes (DEGs) in co-infection were identified by intersecting DEGs from monkeypox datasets with genes from key HIV modules screened using Weighted Gene Co-Expression Network Analysis (WGCNA). After gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and construction of protein-protein interaction (PPI) network, candidate hub genes were further screened based on machine learning algorithms. Transcriptional factors (TFs) and miRNA-candidate hub gene networks were constructed to understand regulatory mechanisms and protein-drug interactions to identify potential therapeutic drugs. Seven candidate hub genes-MX2, ADAR, POLR2H, RPL5, IFI16, IFIT2, and RPS5-were identified. TFs and miRNAs associated with these hub genes, playing a key role in regulating viral infection and inflammation due to the activation of antiviral innate immunity, were also identified through network analysis. Potential therapeutic drugs were screened based on these hub genes: AZT, a nucleotide reverse transcriptase inhibitor, suppressed viral replication in HIV and monkeypox co-infection, while mefloquine inhibited inflammation due to the activation of antiviral innate immunity. In conclusion, the study identified candidate hub genes, their transcriptional regulation, signaling pathways, and small-molecule drugs in HIV and monkeypox co-infection, contributing to understanding the pathogenesis of HIV and monkeypox co-infection and informing precise therapeutic strategies.

摘要

本研究通过生物信息学和机器学习探索了人类免疫缺陷病毒(HIV)和猴痘合并感染的发病机制,确定了候选枢纽基因和潜在药物。从 GEO 数据库中获取了 HIV(GSE37250)和猴痘(GSE24125)数据集。通过将猴痘数据集中的差异表达基因(DEG)与加权基因共表达网络分析(WGCNA)筛选的关键 HIV 模块中的基因进行交集,鉴定出合并感染中的共同差异表达基因(DEG)。在进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析以及构建蛋白质-蛋白质相互作用(PPI)网络后,进一步基于机器学习算法筛选候选枢纽基因。构建转录因子(TF)和 miRNA-候选枢纽基因网络,以了解调控机制和蛋白-药物相互作用,从而鉴定潜在的治疗药物。鉴定出 7 个候选枢纽基因-MX2、ADAR、POLR2H、RPL5、IFI16、IFIT2 和 RPS5。通过网络分析还鉴定出与这些枢纽基因相关的 TF 和 miRNA,它们在激活抗病毒固有免疫后,在调节病毒感染和炎症方面发挥关键作用。基于这些枢纽基因筛选出潜在的治疗药物:核苷类逆转录酶抑制剂 AZT 抑制 HIV 和猴痘合并感染中的病毒复制,而甲氟喹通过激活抗病毒固有免疫抑制炎症。总之,本研究确定了 HIV 和猴痘合并感染中候选枢纽基因、其转录调控、信号通路和小分子药物,有助于了解 HIV 和猴痘合并感染的发病机制,并为精确治疗策略提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4e7/11535269/0495728ad366/41598_2024_78540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验