Suppr超能文献

分子协同效应介导高效界面化学:实现水系锌离子电池无枝晶锌负极

Molecular Synergistic Effects Mediate Efficient Interfacial Chemistry: Enabling Dendrite-Free Zinc Anode for Aqueous Zinc-Ion Batteries.

作者信息

Li Yue-Ming, Li Wen-Hao, Li Kai, Jiang Wen-Bin, Tang Yuan-Zheng, Zhang Xiao-Ying, Yuan Hai-Yan, Zhang Jing-Ping, Wu Xing-Long

机构信息

Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.

MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P. R. China.

出版信息

J Am Chem Soc. 2024 Nov 13;146(45):30998-31011. doi: 10.1021/jacs.4c10337. Epub 2024 Nov 4.

Abstract

The primary cause of the accelerated battery failure in aqueous zinc-ion batteries (AZIBs) is the uncontrollable evolution of the zinc metal-electrolyte interface. In the present research on the development of multiadditives to ameliorate interfaces, it is challenging to elucidate the mechanisms of the various components. Additionally, the synergy among additive molecules is frequently disregarded, resulting in the combined efficacy of multiadditives that is unlikely to surpass the sum of each component. In this study, the "molecular synergistic effect" is employed, which is generated by two nonhomologous acid ester (NAE) additives in the double electrical layer microspace. Specifically, ethyl methyl carbonate (EMC) is more inclined to induce the oriented deposition of zinc metal by means of targeted adsorption with the zinc (002) crystal plane. Methyl acetate (MA) is more likely to enter the solvated shell of Zn and will be profoundly reduced to produce SEI that is dominated by organic components under the "molecular synergistic effect" of EMC. Furthermore, MA persists in a spontaneous hydrolysis reaction, which serves to mitigate the pH increase caused by the hydrogen evolution reaction (HER) and further prevents the formation of byproducts. Consequently, the 1E1M electrolyte not only extends the cycle life of the zinc anode to 3140 cycles (1 mA h cm and 1 mA cm) but also extends the life of the Zn//MnO full battery, with the capacity retention rate still at 89.9% after 700 cycles.

摘要

水系锌离子电池(AZIBs)中电池加速失效的主要原因是锌金属-电解质界面的不可控演变。在目前关于开发多添加剂以改善界面的研究中,阐明各种成分的作用机制具有挑战性。此外,添加剂分子之间的协同作用常常被忽视,导致多添加剂的综合效果不太可能超过各成分效果之和。在本研究中,采用了由双电层微空间中的两种非同系酸酯(NAE)添加剂产生的“分子协同效应”。具体而言,碳酸甲乙酯(EMC)更倾向于通过与锌(002)晶面的靶向吸附来诱导锌金属的定向沉积。乙酸甲酯(MA)更有可能进入锌的溶剂化壳层,并在EMC的“分子协同效应”下被深度还原以产生以有机成分为主的固体电解质界面(SEI)。此外,MA持续进行自发水解反应,这有助于减轻析氢反应(HER)引起的pH值升高,并进一步防止副产物的形成。因此,1E1M电解质不仅将锌负极的循环寿命延长至3140次循环(1 mA h cm²和1 mA cm²),还延长了Zn//MnO全电池的寿命,在700次循环后容量保持率仍为89.9%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验