Kim Kiwon, Kim Gyuchan, Jeong Taeyoung, Lee Wonyoung, Yang Yunho, Kim Byung-Hyun, Kim Bubryur, Lee Byeongyong, Kang Joonhee, Kim Myeongjin
Department of Hydrogen & Renewable Energy, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea.
Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea.
J Am Chem Soc. 2024 Dec 11;146(49):34033-34042. doi: 10.1021/jacs.4c13137. Epub 2024 Nov 5.
The ligand engineering for single-atom catalysts (SACs) is considered a cutting-edge strategy to tailor their electrocatalytic activity. However, the fundamental reasons underlying the reaction mechanism and the contemplation for which the actual active site for the catalytic reaction depends on the pyrrolic and pyridinic N ligand structure remain to be fully understood. Herein, we first reveal the relationship between the oxygen reduction reaction (ORR) activity and the N ligand structure for the manganese (Mn) single atomic site by the precisely regulated pyrrolic and pyridinic N coordination environment. Experimental and theoretical analyses reveal that the long Mn-N distance in Mn-pyrrolic N enables a high spin state of the Mn center, which is beneficial to reduce the adsorption strength of oxygen intermediates by the high filling state in antibond orbitals, thereby activating the Mn single atomic site to achieve a half-wave potential of 0.896 V vs RHE with outstanding stability in acidic media. This work provides a new fundamental insight into understanding the ORR catalytic origin of Mn SACs and the rational design strategy of SACs for various electrocatalytic reactions.
单原子催化剂(SACs)的配体工程被认为是一种定制其电催化活性的前沿策略。然而,反应机理背后的根本原因以及催化反应的实际活性位点取决于吡咯型和吡啶型N配体结构的相关思考仍有待充分理解。在此,我们首先通过精确调控吡咯型和吡啶型N配位环境,揭示了锰(Mn)单原子位点的氧还原反应(ORR)活性与N配体结构之间的关系。实验和理论分析表明,Mn-吡咯型N中较长的Mn-N距离使Mn中心处于高自旋态,这有利于通过反键轨道中的高填充态降低氧中间体的吸附强度,从而激活Mn单原子位点,在酸性介质中实现相对于可逆氢电极(RHE)为0.896 V的半波电位,并具有出色的稳定性。这项工作为理解Mn SACs的ORR催化起源以及用于各种电催化反应的SACs的合理设计策略提供了新的基本见解。