Luo Zuyang, Xie Jiayin, Cheng Jinshan, Wei Fengli, Lyu Shuai, Zhu Junjiang, Shi Xiaofeng, Yang Xiulin, Wu Bin, Xu Zhichuan J
Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University Chemistry, Wuhan, 430200, China.
Adv Mater. 2025 Jul;37(29):e2504585. doi: 10.1002/adma.202504585. Epub 2025 May 8.
Oxygen reduction reaction (ORR) kinetics are closely related to the electronic structure of active sites. Herein, a single-atomic Mn catalyst decorated with adjacent MoP nanocrystals (MoP@Mn-NC) is reported. The decoration of MoP drives the electronic structure transition of Mn sites from low-spin to high-spin states through an electronic phosphide-support interaction. The rearranged electron occupation in 3d and 3d orbitals of Mn sites leads to electrons occupying the σ orbital in Mn─*O, thereby favoring O adsorption to initiate the ORR mechanism. In situ characterizations confirm that Mn 3d orbital occupation state can activate molecular O₂ and optimize the adsorption of the *OOH intermediate. As a result, the MoP@Mn-NC displays an outstanding alkaline ORR half-wave potential (E = 0.894 V), excellent peak power densities (173/83 mW cm for liquid/solid-state Zn-air batteries, respectively), and long-term stability (840 h) superior to commercial Pt/C. This work provides profound insights into spintronics-level engineering, guiding the design of next-generation high-performance ORR catalysts.
氧还原反应(ORR)动力学与活性位点的电子结构密切相关。在此,报道了一种由相邻的MoP纳米晶体修饰的单原子Mn催化剂(MoP@Mn-NC)。MoP的修饰通过电子磷化物-载体相互作用驱动Mn位点的电子结构从低自旋态转变为高自旋态。Mn位点的3d和3d轨道中重新排列的电子占据导致电子占据Mn─O中的σ轨道,从而有利于O的吸附以启动ORR机制。原位表征证实,Mn 3d轨道占据状态可以激活分子O₂并优化OOH中间体的吸附。结果,MoP@Mn-NC表现出出色的碱性ORR半波电位(E = 0.894 V)、优异的峰值功率密度(液态/固态锌空气电池分别为173/83 mW cm)以及优于商业Pt/C的长期稳定性(840 h)。这项工作为自旋电子学水平的工程提供了深刻见解,指导下一代高性能ORR催化剂的设计。