Hockensmith J W, Kubasek W L, Vorachek W R, von Hippel P H
J Biol Chem. 1986 Mar 15;261(8):3512-8.
Single-pulse (approximately 8 ns) ultraviolet laser excitation of protein-nucleic acid complexes can result in efficient and rapid covalent cross-linking of proteins to nucleic acids. The reaction produces no nucleic acid-nucleic acid or protein-protein cross-links, and no nucleic acid degradation. The efficiency of cross-linking is dependent on the wavelength of the exciting radiation, on the nucleotide composition of the nucleic acid, and on the total photon flux. The yield of cross-links/laser pulse is largest between 245 and 280 nm; cross-links are obtained with far UV photons (200-240 nm) as well, but in this range appreciable protein degradation is also observed. The method has been calibrated using the phage T4-coded gene 32 (single-stranded DNA-binding) protein interaction with oligonucleotides, for which binding constants have been measured previously by standard physical chemical methods (Kowalczykowski, S. C., Lonberg, N., Newport, J. W., and von Hippel, P. H. (1981) J. Mol. Biol. 145, 75-104). Photoactivation occurs primarily through the nucleotide residues of DNA and RNA at excitation wavelengths greater than 245 nm, with reaction through thymidine being greatly favored. The nucleotide residues may be ranked in order of decreasing photoreactivity as: dT much greater than dC greater than rU greater than rC, dA, dG. Cross-linking appears to be a single-photon process and occurs through single nucleotide (dT) residues; pyrimidine dimer formation is not involved. Preliminary studies of the individual proteins of the five-protein T4 DNA replication complex show that gene 43 protein (polymerase), gene 32 protein, and gene 44 and 45 (polymerase accessory) proteins all make contact with DNA, and can be cross-linked to it, whereas gene 62 (polymerase accessory) protein cannot. A survey of other nucleic acid-binding proteins has shown that E. coli RNA polymerase, DNA polymerase I, and rho protein can all be cross-linked to various nucleic acids by the laser technique. The potential uses of this procedure in probing protein-nucleic acid interactions are discussed.
对蛋白质 - 核酸复合物进行单脉冲(约8纳秒)紫外激光激发可导致蛋白质与核酸高效快速地共价交联。该反应不会产生核酸 - 核酸或蛋白质 - 蛋白质交联,也不会导致核酸降解。交联效率取决于激发辐射的波长、核酸的核苷酸组成以及总光子通量。交联/激光脉冲的产率在245至280纳米之间最大;远紫外光子(200 - 240纳米)也能产生交联,但在此范围内也会观察到明显的蛋白质降解。该方法已通过噬菌体T4编码的基因32(单链DNA结合)蛋白与寡核苷酸的相互作用进行校准,此前已通过标准物理化学方法测量了它们的结合常数(科瓦尔奇科夫斯基,S.C.,隆伯格,N.,纽波特,J.W.,和冯·希佩尔,P.H.(1981年)《分子生物学杂志》145卷,75 - 104页)。在激发波长大于245纳米时,光活化主要通过DNA和RNA的核苷酸残基发生,通过胸腺嘧啶的反应极为有利可图。核苷酸残基的光反应性从高到低排序为:dT远大于dC大于rU大于rC、dA、dG。交联似乎是一个单光子过程,通过单个核苷酸(dT)残基发生;不涉及嘧啶二聚体的形成。对五蛋白T4 DNA复制复合物中各个蛋白质的初步研究表明,基因43蛋白(聚合酶)、基因32蛋白以及基因44和45(聚合酶辅助)蛋白都与DNA接触并可与之交联,而基因62(聚合酶辅助)蛋白则不能。对其他核酸结合蛋白的一项调查表明,大肠杆菌RNA聚合酶、DNA聚合酶I和rho蛋白都可以通过激光技术与各种核酸交联。讨论了该方法在探测蛋白质 - 核酸相互作用方面的潜在用途。