Suppr超能文献

在癫痫的Pten基因敲除模型中生长抑素中间神经元的命运映射与结构

Somatostatin interneuron fate-mapping and structure in a Pten knockout model of epilepsy.

作者信息

Drake Austin W, Jerow Lilian G, Ruksenas Justin V, McCoy Carlie, Danzer Steve C

机构信息

Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.

Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.

出版信息

Front Cell Neurosci. 2024 Oct 21;18:1474613. doi: 10.3389/fncel.2024.1474613. eCollection 2024.

Abstract

Disruption of inhibitory interneurons is common in the epileptic brain and is hypothesized to play a pivotal role in epileptogenesis. Abrupt disruption and loss of interneurons is well-characterized in status epilepticus models of epilepsy, however, status epilepticus is a relatively rare cause of epilepsy in humans. How interneuron disruption evolves in other forms of epilepsy is less clear. Here, we explored how somatostatin (SST) interneuron disruption evolves in quadruple transgenic Gli1-CreER, Pten, SST-FlpO, and frt-eGFP mice. In these animals, epilepsy develops following deletion of the mammalian target of rapamycin (mTOR) negative regulator phosphatase and tensin homolog (Pten) from a subset of dentate granule cells, while downstream Pten-expressing SST neurons are fate-mapped with green fluorescent protein (GFP). The model captures the genetic complexity of human mTORopathies, in which mutations can be restricted to excitatory neuron lineages, implying that interneuron involvement is later developing and secondary. In dentate granule cell (DGC)-Pten knockouts (KOs), the density of fate-mapped SST neurons was reduced in the hippocampus, but their molecular phenotype was unchanged, with similar percentages of GFP+ cells immunoreactive for SST and parvalbumin (PV). Surviving SST neurons in the dentate gyrus had larger somas, and the density of GFP+ processes in the dentate molecular layer was unchanged despite SST cell loss and expansion of the molecular layer, implying compensatory sprouting of surviving cells. The density of Znt3-immunolabeled puncta, a marker of granule cell presynaptic terminals, apposed to GFP+ processes in the hilus was increased, suggesting enhanced granule cell input to SST neurons. Finally, the percentage of GFP+ cells that were FosB positive was significantly increased, implying that surviving SST neurons are more active. Together, findings suggest that somatostatin-expressing interneurons exhibit a combination of pathological (cell loss) and adaptive (growth) responses to hyperexcitability and seizures driven by upstream Pten KO excitatory granule cells.

摘要

抑制性中间神经元的破坏在癫痫大脑中很常见,据推测在癫痫发生过程中起关键作用。在癫痫持续状态模型中,中间神经元的突然破坏和丧失已有充分描述,然而,癫痫持续状态在人类癫痫中是相对罕见的病因。在其他形式的癫痫中,中间神经元破坏如何演变尚不清楚。在此,我们探究了生长抑素(SST)中间神经元破坏在四重转基因Gli1-CreER、Pten、SST-FlpO和frt-eGFP小鼠中是如何演变的。在这些动物中,癫痫是在齿状颗粒细胞亚群中删除雷帕霉素哺乳动物靶标(mTOR)负调节因子磷酸酶和张力蛋白同源物(Pten)后发生的,而下游表达Pten的SST神经元则通过绿色荧光蛋白(GFP)进行命运映射。该模型捕捉了人类mTOR病的遗传复杂性,其中突变可能仅限于兴奋性神经元谱系,这意味着中间神经元的参与是后期发展且继发的。在齿状颗粒细胞(DGC)-Pten基因敲除(KO)小鼠中,海马中命运映射的SST神经元密度降低,但其分子表型未改变,SST和小白蛋白(PV)免疫反应性的GFP+细胞百分比相似。齿状回中存活的SST神经元胞体更大,尽管SST细胞丧失且分子层扩张,但齿状分子层中GFP+突起的密度未改变,这意味着存活细胞的代偿性发芽。与hilus中GFP+突起相邻的颗粒细胞突触前终末标记物Znt3免疫标记斑点的密度增加,表明颗粒细胞对SST神经元的输入增强。最后,FosB阳性的GFP+细胞百分比显著增加,这意味着存活的SST神经元更活跃。总之,研究结果表明,表达生长抑素的中间神经元对上游Pten基因敲除兴奋性颗粒细胞驱动的过度兴奋和癫痫发作表现出病理(细胞丧失)和适应性(生长)反应的组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a91e/11532043/b08926779167/fncel-18-1474613-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验