Suppr超能文献

TL-CStrans Net:一种通过CS-Transformer驱动的用于乒乓球运动员动作识别的视觉机器人。

TL-CStrans Net: a vision robot for table tennis player action recognition driven via CS-Transformer.

作者信息

Ma Libo, Tong Yan

机构信息

Guangdong Polytechnic of Environmental Protection Engineering, Foshan, China.

Hunan Labor and Human Resources Vocational College, Changsha, China.

出版信息

Front Neurorobot. 2024 Oct 21;18:1443177. doi: 10.3389/fnbot.2024.1443177. eCollection 2024.

Abstract

Currently, the application of robotics technology in sports training and competitions is rapidly increasing. Traditional methods mainly rely on image or video data, neglecting the effective utilization of textual information. To address this issue, we propose: TL-CStrans Net: A vision robot for table tennis player action recognition driven via CS-Transformer. This is a multimodal approach that combines CS-Transformer, CLIP, and transfer learning techniques to effectively integrate visual and textual information. Firstly, we employ the CS-Transformer model as the neural computing backbone. By utilizing the CS-Transformer, we can effectively process visual information extracted from table tennis game scenes, enabling accurate stroke recognition. Then, we introduce the CLIP model, which combines computer vision and natural language processing. CLIP allows us to jointly learn representations of images and text, thereby aligning the visual and textual modalities. Finally, to reduce training and computational requirements, we leverage pre-trained CS-Transformer and CLIP models through transfer learning, which have already acquired knowledge from relevant domains, and apply them to table tennis stroke recognition tasks. Experimental results demonstrate the outstanding performance of TL-CStrans Net in table tennis stroke recognition. Our research is of significant importance in promoting the application of multimodal robotics technology in the field of sports and bridging the gap between neural computing, computer vision, and neuroscience.

摘要

目前,机器人技术在体育训练和比赛中的应用正在迅速增加。传统方法主要依赖图像或视频数据,而忽视了文本信息的有效利用。为了解决这个问题,我们提出:TL-CStrans Net:一种通过CS-Transformer驱动的用于乒乓球运动员动作识别的视觉机器人。这是一种多模态方法,结合了CS-Transformer、CLIP和迁移学习技术,以有效地整合视觉和文本信息。首先,我们采用CS-Transformer模型作为神经计算主干。通过利用CS-Transformer,我们可以有效地处理从乒乓球比赛场景中提取的视觉信息,实现准确的击球识别。然后,我们引入CLIP模型,它结合了计算机视觉和自然语言处理。CLIP使我们能够联合学习图像和文本的表示,从而对齐视觉和文本模态。最后,为了降低训练和计算需求,我们通过迁移学习利用预训练的CS-Transformer和CLIP模型,这些模型已经从相关领域获得了知识,并将它们应用于乒乓球击球识别任务。实验结果证明了TL-CStrans Net在乒乓球击球识别中的出色性能。我们的研究对于推动多模态机器人技术在体育领域的应用以及弥合神经计算、计算机视觉和神经科学之间的差距具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d09e/11532032/b119086b9efd/fnbot-18-1443177-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验