Suppr超能文献

一种预测脓毒症患者入院后 48 小时内需要机械通气风险的新列线图:一项回顾性分析。

A novel nomogram to predict the risk of requiring mechanical ventilation in patients with sepsis within 48 hours of admission: a retrospective analysis.

机构信息

Emergency Department, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua City, Zhejiang, China.

Haemaology Department, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua City, Zhejiang, China.

出版信息

PeerJ. 2024 Nov 1;12:e18500. doi: 10.7717/peerj.18500. eCollection 2024.

Abstract

OBJECTIVE

To establish a model that can predict the risk of requiring mechanical ventilation within 48 h after admission in patients with sepsis.

METHODS

Data for patients with sepsis admitted to Dongyang People's Hospital from October 2011 to October 2023 were collected and divided into a modeling group and a validation group. Independent risk factors in the modeling group were analyzed, and a corresponding predictive nomogram was established. The model was evaluated for discriminative power (the area under the curve of the receiver operating characteristic curve, AUC), calibration degree (Hosmer-Lemeshow test), and clinical benefit (decision curve analysis, DCA). Models based on the Sequential Organ Failure Assessment (SOFA) scores, the National Early Warning Score (NEWS) scores and multiple machine learning methods were also established.

RESULTS

The independent factors related to the risk of requiring mechanical ventilation in patients with sepsis within 48 h included lactic acid, pro-brain natriuretic peptide (PRO-BNP), and albumin levels, as well as prothrombin time, the presence of lung infection, and D-dimer levels. The AUC values of nomogram model in the modeling group and validation group were 0.820 and 0.837, respectively. The nomogram model had a good fit and clinical value. The AUC values of the models constructed using SOFA scores and NEWSs were significantly lower than those of the nomogram ( < 0.01). The AUC value of the integrated machine-learning model for the validation group was 0.849, comparable to that of the nomogram model ( = 0.791).

CONCLUSION

The established nomogram could effectively predict the risk of requiring mechanical ventilation within 48 h of admission by patients with sepsis. Thus, the model can be used for the treatment and management of sepsis.

摘要

目的

建立一个模型,以预测脓毒症患者入院后 48 小时内需要机械通气的风险。

方法

收集 2011 年 10 月至 2023 年 10 月期间东阳人民医院收治的脓毒症患者的数据,并将其分为建模组和验证组。对建模组中的独立危险因素进行分析,并建立相应的预测列线图。该模型的判别能力(接受者操作特征曲线下的面积,AUC)、校准程度(Hosmer-Lemeshow 检验)和临床获益(决策曲线分析,DCA)进行评估。还建立了基于序贯器官衰竭评估(SOFA)评分、国家早期预警评分(NEWS)和多种机器学习方法的模型。

结果

与脓毒症患者入院后 48 小时内需要机械通气相关的独立因素包括乳酸、脑利钠肽前体(PRO-BNP)和白蛋白水平,以及凝血酶原时间、肺部感染和 D-二聚体水平。在建模组和验证组中,列线图模型的 AUC 值分别为 0.820 和 0.837。列线图模型拟合度和临床价值良好。SOFA 评分和 NEWS 构建的模型 AUC 值明显低于列线图(<0.01)。验证组综合机器学习模型的 AUC 值为 0.849,与列线图模型相当(=0.791)。

结论

建立的列线图可以有效预测脓毒症患者入院后 48 小时内需要机械通气的风险。因此,该模型可用于脓毒症的治疗和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6cd/11533908/be74fbfb2048/peerj-12-18500-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验