Alazmi Meshari
College of Computer Science and Engineering, University of Ha'il, Ha'il, Saudi Arabia.
Front Artif Intell. 2024 Oct 21;7:1446063. doi: 10.3389/frai.2024.1446063. eCollection 2024.
In the intricate realm of enzymology, the precise quantification of enzyme efficiency, epitomized by the turnover number ( ), is a paramount yet elusive objective. Existing methodologies, though sophisticated, often grapple with the inherent stochasticity and multifaceted nature of enzymatic reactions. Thus, there arises a necessity to explore avant-garde computational paradigms.
In this context, we introduce "enzyme catalytic efficiency prediction (ECEP)," leveraging advanced deep learning techniques to enhance the previous implementation, TurNuP, for predicting the enzyme catalase . Our approach significantly outperforms prior methodologies, incorporating new features derived from enzyme sequences and chemical reaction dynamics. Through ECEP, we unravel the intricate enzyme-substrate interactions, capturing the nuanced interplay of molecular determinants.
Preliminary assessments, compared against established models like TurNuP and DLKcat, underscore the superior predictive capabilities of ECEP, marking a pivotal shift enzymatic turnover number estimation. This study enriches the computational toolkit available to enzymologists and lays the groundwork for future explorations in the burgeoning field of bioinformatics. This paper suggested a multi-feature ensemble deep learning-based approach to predict enzyme kinetic parameters using an ensemble convolution neural network and XGBoost by calculating weighted-average of each feature-based model's output to outperform traditional machine learning methods. The proposed "ECEP" model significantly outperformed existing methodologies, achieving a mean squared error (MSE) reduction of 0.35 from 0.81 to 0.46 and -squared score from 0.44 to 0.54, thereby demonstrating its superior accuracy and effectiveness in enzyme catalytic efficiency prediction.
This improvement underscores the model's potential to enhance the field of bioinformatics, setting a new benchmark for performance.
在复杂的酶学领域,以周转率( )为代表的酶效率的精确量化是一个至关重要但难以实现的目标。现有的方法虽然复杂,但常常难以应对酶促反应固有的随机性和多面性。因此,有必要探索前沿的计算范式。
在此背景下,我们引入了“酶催化效率预测(ECEP)”,利用先进的深度学习技术改进先前用于预测过氧化氢酶的TurNuP实现。我们的方法显著优于先前的方法,纳入了从酶序列和化学反应动力学中衍生的新特征。通过ECEP,我们揭示了复杂的酶-底物相互作用,捕捉了分子决定因素的细微相互作用。
与TurNuP和DLKcat等既定模型相比的初步评估强调了ECEP卓越的预测能力,标志着酶周转率估计的关键转变。这项研究丰富了酶学家可用的计算工具包,并为生物信息学新兴领域的未来探索奠定了基础。本文提出了一种基于多特征集成深度学习的方法,通过计算每个基于特征的模型输出的加权平均值,使用集成卷积神经网络和XGBoost来预测酶动力学参数,以超越传统机器学习方法。所提出的“ECEP”模型显著优于现有方法,均方误差(MSE)从0.81降至0.46,降低了0.35, 平方得分从0.44提高到0.54,从而证明了其在酶催化效率预测方面的卓越准确性和有效性。
这一改进突出了该模型在增强生物信息学领域的潜力,为性能设定了新的基准。