Institute of Automation, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.
Sci Rep. 2021 Mar 31;11(1):7291. doi: 10.1038/s41598-021-86780-4.
The study of cellular complexity in the nervous system based on anatomy has shown more practical and objective advantages in morphology than other perspectives on molecular, physiological, and evolutionary aspects. However, morphology-based neuron type classification in the whole rat brain is challenging, given the significant number of neuron types, limited reconstructed neuron samples, and diverse data formats. Here, we report that different types of deep neural network modules may well process different kinds of features and that the integration of these submodules will show power on the representation and classification of neuron types. For SWC-format data, which are compressed but unstructured, we construct a tree-based recurrent neural network (Tree-RNN) module. For 2D or 3D slice-format data, which are structured but with large volumes of pixels, we construct a convolutional neural network (CNN) module. We also generate a virtually simulated dataset with two classes, reconstruct a CASIA rat-neuron dataset with 2.6 million neurons without labels, and select the NeuroMorpho-rat dataset with 35,000 neurons containing hierarchical labels. In the twelve-class classification task, the proposed model achieves state-of-the-art performance compared with other models, e.g., the CNN, RNN, and support vector machine based on hand-designed features.
基于解剖学的神经系统细胞复杂性研究在形态学方面比分子、生理和进化方面的其他观点具有更实际和客观的优势。然而,由于神经元类型数量众多、重建神经元样本有限以及数据格式多样,对整个大鼠脑的基于形态学的神经元类型分类具有挑战性。在这里,我们报告不同类型的深度神经网络模块可能很好地处理不同类型的特征,并且这些子模块的集成将在神经元类型的表示和分类方面显示出强大的功能。对于 SWC 格式的数据,这些数据是压缩的但非结构化的,我们构建了基于树的循环神经网络(Tree-RNN)模块。对于 2D 或 3D 切片格式的数据,这些数据是结构化的但具有大量像素,我们构建了卷积神经网络(CNN)模块。我们还生成了一个具有两个类别的虚拟模拟数据集,对没有标签的 260 万个神经元的 CASIA 大鼠神经元数据集进行了重建,并选择了包含层次标签的具有 35000 个神经元的 NeuroMorpho-rat 数据集。在十二类分类任务中,与基于手工设计特征的 CNN、RNN 和支持向量机等其他模型相比,所提出的模型实现了最先进的性能。