Suppr超能文献

使用人工智能技术在疾病极早期预测重症急性胰腺炎,无需实验室数据或影像学检查:PANCREATIA研究

Prediction of Severe Acute Pancreatitis at a Very Early Stage of the Disease Using Artificial Intelligence Techniques, Without Laboratory Data or Imaging Tests: The PANCREATIA Study.

作者信息

Villasante Sara, Fernandes Nair, Perez Marc, Cordobés Miguel Angel, Piella Gemma, Martinez María, Gomez-Gavara Concepción, Blanco Laia, Alberti Piero, Charco Ramón, Pando Elizabeth

机构信息

Universitat Autònoma de Barcelona, Spain.

Hospital Universitari Vall d'Hebron, Department of Hepato-Pancreato-Biliary and Transplant Surgery, Barcelona, Spain.

出版信息

Ann Surg. 2024 Nov 5. doi: 10.1097/SLA.0000000000006579.

Abstract

OBJECTIVE

To evaluate machine learning models' performance in predicting acute pancreatitis severity using early-stage variables while excluding laboratory and imaging tests.

SUMMARY BACKGROUND DATA

Severe acute pancreatitis (SAP) affects approximately 20% of acute pancreatitis (AP) patients and is associated with high mortality rates. Accurate early prediction of SAP and in-hospital mortality is crucial for effective management. Traditional scores such as APACHE-II and BISAP are complex and require laboratory tests, while early predictive models are lacking. Machine learning (ML) has shown promising results in predictive modelling, potentially outperforming traditional methods.

METHODS

We analysed data from a prospective database of AP patients admitted to Vall d'Hebron Hospital from November 2015 to January 2022. Inclusion criteria were adults diagnosed with AP according to the 2012 Atlanta classification. Data included basal characteristics, current medication, and vital signs. We developed machine learning models to predict SAP, in-hospital mortality, and intensive care unit (ICU) admission. The modelling process included two stages: Stage 0, which used basal characteristics and medication, and Stage 1, which included data from Stage 0 and vital signs.

RESULTS

Out of 634 cases, 594 were analysed. The Stage 0 model showed AUC values of 0.698 for mortality, 0.721 for ICU admission, and 0.707 for persistent organ failure. The Stage 1 model improved performance with AUC values of 0.849 for mortality, 0.786 for ICU admission, and 0.783 for persistent organ failure. The models demonstrated comparable or superior performance to APACHE-II and BISAP scores.

CONCLUSIONS

The ML models showed good predictive capacity for SAP, ICU admission, and mortality using early-stage data without laboratory or imaging tests. This approach could revolutionise AP patients' initial triage and management, providing a personalised prediction method based on early clinical data.

摘要

目的

评估机器学习模型在使用早期变量预测急性胰腺炎严重程度时的性能,同时排除实验室检查和影像学检查。

总结背景数据

重症急性胰腺炎(SAP)影响约20%的急性胰腺炎(AP)患者,并与高死亡率相关。准确早期预测SAP和院内死亡率对于有效管理至关重要。传统评分如APACHE-II和BISAP较为复杂且需要实验室检查,而早期预测模型尚缺乏。机器学习(ML)在预测建模中已显示出有前景的结果,可能优于传统方法。

方法

我们分析了2015年11月至2022年1月在Vall d'Hebron医院收治的AP患者前瞻性数据库中的数据。纳入标准为根据2012年亚特兰大分类诊断为AP的成年人。数据包括基础特征、当前用药和生命体征。我们开发了机器学习模型来预测SAP、院内死亡率和重症监护病房(ICU)入院情况。建模过程包括两个阶段:0阶段,使用基础特征和用药情况;1阶段,包括0阶段的数据和生命体征。

结果

在634例病例中,分析了594例。0阶段模型的死亡率AUC值为0.698,ICU入院AUC值为0.721,持续性器官衰竭AUC值为0.707。1阶段模型性能有所改善,死亡率AUC值为0.849,ICU入院AUC值为0.786,持续性器官衰竭AUC值为0.783。这些模型表现出与APACHE-II和BISAP评分相当或更优的性能。

结论

ML模型使用早期数据(无需实验室或影像学检查)对SAP、ICU入院和死亡率显示出良好的预测能力。这种方法可能会彻底改变AP患者的初始分诊和管理,提供基于早期临床数据的个性化预测方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验