Ding Ji, Cheng Zhaojun, Ma Yulong, Zhang Tongxing, Du Lilong, Jiang Xiaobing, Zhu Meifeng, Li Wen, Xu Baoshan
College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), Nankai University, Tianjin, 300071, China.
Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
Adv Healthc Mater. 2025 Jan;14(2):e2402932. doi: 10.1002/adhm.202402932. Epub 2024 Nov 5.
Injectable porous microspheres represent a promising therapeutic platform for cell delivery, drug delivery, and tissue regeneration. Yet, the engineering of silk fibroin microspheres with a highly interconnected porous structure remains an unsolved challenge. In this study, a simple and efficient method is developed that does not require the use of organic solvents to prepare silk fibroin microspheres with a predictable structure. Through extensive screening, the addition of glucose is found to direct the formation of a highly interconnected porous structure from the interior to the surface of silk fibroin microspheres. Compared to silk fibroin microspheres (SF microspheres) produced through a combination of electro-spray, cryopreservation, and freeze drying, silk fibroin-glucose microspheres (SF-Glu microspheres) demonstrates enhanced capabilities in promoting cell adhesion and proliferation in vitro. Both SF-Glu and SF microspheres exhibit the capacity to maintain the sustained release kinetics of the loaded model drug. Furthermore, SF-Glu microspheres facilitate the recruitment of endogenous cells, capillary migration, and macrophage phenotype switch following subcutaneous injection in the rats. This study opens a new avenue for the construction of porous silk fibroin microspheres, which could lead to a broader range of applications in regenerative medicine.
可注射多孔微球是用于细胞递送、药物递送和组织再生的一个很有前景的治疗平台。然而,构建具有高度相互连通的多孔结构的丝素蛋白微球仍然是一个未解决的挑战。在本研究中,开发了一种简单有效的方法,该方法无需使用有机溶剂即可制备具有可预测结构的丝素蛋白微球。通过广泛筛选,发现添加葡萄糖可引导丝素蛋白微球从内部到表面形成高度相互连通的多孔结构。与通过电喷雾、冷冻保存和冷冻干燥相结合制备的丝素蛋白微球(SF微球)相比,丝素蛋白-葡萄糖微球(SF-Glu微球)在体外促进细胞黏附和增殖方面表现出更强的能力。SF-Glu微球和SF微球都具有维持负载模型药物的持续释放动力学的能力。此外,在大鼠皮下注射后,SF-Glu微球促进内源性细胞募集、毛细血管迁移和巨噬细胞表型转换。本研究为多孔丝素蛋白微球的构建开辟了一条新途径,这可能会在再生医学中带来更广泛的应用。