Suppr超能文献

评估用于麻风病组织病理学诊断的先进机器学习模型。

Evaluating Advanced Machine Learning Models for Histopathological Diagnosis of Hansen Disease.

作者信息

Vargas-Clavijo Mariana, Cardona-Castro Nora, Ospina-Gómez Juan Pablo, Serrano-Coll Héctor

机构信息

Facultad de Ingeniería Biomédica, Universidad CES, Medellín, Colombia.

Instituto Colombiano de Medicina Tropical-Universidad CES, Medellín, Colombia ; and.

出版信息

Am J Dermatopathol. 2025 Apr 1;47(4):301-307. doi: 10.1097/DAD.0000000000002875. Epub 2024 Nov 5.

Abstract

INTRODUCTION

Leprosy is a neglected infectious disease caused by Mycobacterium leprae and Mycobacterium lepromatosis and remains a public health challenge in tropical regions. Therefore, the development of technological tools such as machine learning (ML) offers an opportunity to innovate strategies for improving the diagnosis of this complex disease.

OBJECTIVE

To validate the utility of different ML models for the histopathological diagnosis of Hansen disease.

METHODOLOGY

An observational study was conducted where 55 H&E-stained tissue slides from leprosy patients and 51 healthy skin controls were analyzed using microphotographs captured at various magnifications. These images were categorized based on histopathological findings and processed using the Cross-Industry Standard Process for Data Mining methodology for designing and training ML models. Five types of ML models were evaluated using standard metrics such as accuracy, sensitivity, and specificity, emphasizing data normalization as a fundamental step in optimizing model performance.

RESULTS

The artificial neural network (ANN) model demonstrated an accuracy of 70%, sensitivity of 74%, and specificity of 65%, demonstrating its ability to identify leprosy cases with moderate precision. The receiver operating characteristic curve of the ANN model showed an area under the curve of 0.71. Conversely, models such as decision trees, logistic regression, and random forests showed similar accuracy results but with slightly lower sensitivity, potentially indicating a higher risk of false negatives in detecting leprosy-positive cases.

CONCLUSION

The ANN model emerges as a promising alternative for leprosy detection. However, further refinement of these models is necessary to enhance their adaptability across different clinical settings and participation in patient care.

摘要

引言

麻风病是一种由麻风分枝杆菌和瘤型麻风分枝杆菌引起的被忽视的传染病,在热带地区仍然是一项公共卫生挑战。因此,机器学习(ML)等技术工具的发展为创新改善这种复杂疾病诊断的策略提供了机会。

目的

验证不同机器学习模型在麻风病组织病理学诊断中的效用。

方法

进行了一项观察性研究,使用在不同放大倍数下拍摄的显微照片对55张来自麻风病患者的苏木精-伊红(H&E)染色组织切片和51张健康皮肤对照进行分析。这些图像根据组织病理学发现进行分类,并使用跨行业数据挖掘标准流程方法进行处理,以设计和训练机器学习模型。使用诸如准确性、敏感性和特异性等标准指标对五种类型的机器学习模型进行评估,强调数据归一化是优化模型性能的基本步骤。

结果

人工神经网络(ANN)模型的准确率为70%,敏感性为74%,特异性为65%,表明其能够以中等精度识别麻风病病例。ANN模型的受试者工作特征曲线显示曲线下面积为0.71。相反,决策树、逻辑回归和随机森林等模型显示出类似的准确性结果,但敏感性略低,这可能表明在检测麻风病阳性病例时假阴性风险较高。

结论

人工神经网络模型成为麻风病检测的一种有前景的替代方法。然而,有必要进一步完善这些模型,以提高它们在不同临床环境中的适应性并参与患者护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验