Suppr超能文献

基于结构MRI生物标志物的运动员跟腱损伤预防:一种机器学习方法

Towards Achilles Tendon Injury Prevention in Athletes with Structural MRI Biomarkers: A Machine Learning Approach.

作者信息

Kapinski Norbert, Jaskulski Karol, Witkowska Justyna, Kozlowski Adam, Adamczyk Pawel, Wysoczanski Bartosz, Zdrodowska Agnieszka, Niemaszyk Adam, Ciszkowska-Lyson Beata, Starczewski Michal

机构信息

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland.

Smarter Diagnostics, Olsztyn, Poland.

出版信息

Sports Med Open. 2024 Nov 5;10(1):118. doi: 10.1186/s40798-024-00786-6.

Abstract

BACKGROUND

Recent advancements in artificial intelligence have proven their effectiveness in orthopaedic settings, especially in tasks like medical image analysis. This study compares human musculoskeletal radiologists to artificial intelligence in a novel, detailed, short, and cost-effective examination of Achilles tendon magnetic resonance images to uncover potential disparities in their reasoning approaches. Aiming to identify relationships between the structured assessment of the Achilles tendon and its function that could support injury prevention. We examined 72 athletes to investigate the link between Achilles tendon structure, as visualised in magnetic resonance images using a precise T2*-weighted gradient echo sequence with very short echo times, and its functional attributes. The acquired data were analysed using advanced artificial intelligence techniques and reviewed by radiologists. Additionally, we conducted statistical assessments to explore relationships with functional studies in four meaningful groups: dynamic strength, range of motion, muscle torque and stabilography.

RESULTS

The results show notable linear or non-linear relationships between functional indicators and structural alterations (maximal obtained Spearman correlation coefficients ranged from 0.3 to 0.36 for radiological assessment and from 0.33 to 0.49 for artificial intelligence assessment, while maximal normalised mutual information ranged from 0.52 to 0.57 for radiological assessment and from 0.42 to 0.6 for artificial intelligence assessment). Moreover, when artificial intelligence-based magnetic resonance assessment was utilised as an input, the associations consistently proved more robust, or the count of significant relationships surpassed that derived from radiological assessment. Ultimately, utilising only structural parameters as inputs enabled us to explain up to 59% of the variance within specific functional groups.

CONCLUSIONS

This analysis revealed that structural parameters influence four key functional aspects related to the Achilles tendon. Furthermore, we found that relying solely on subjective radiologist opinions limited our ability to reason effectively, in contrast to the structured artificial intelligence assessment.

STUDY DESIGN

Cross-sectional studies.

摘要

背景

人工智能的最新进展已在骨科领域证明了其有效性,尤其是在医学图像分析等任务中。本研究在一项新颖、详细、简短且具有成本效益的跟腱磁共振成像检查中,将人类肌肉骨骼放射科医生与人工智能进行比较,以揭示他们推理方法中的潜在差异。旨在确定跟腱的结构化评估与其功能之间的关系,以支持损伤预防。我们检查了72名运动员,以研究在使用具有极短回波时间的精确T2 *加权梯度回波序列的磁共振图像中可视化的跟腱结构与其功能属性之间的联系。使用先进的人工智能技术分析获取的数据,并由放射科医生进行审查。此外,我们进行了统计评估,以探索与四个有意义的功能研究组的关系:动态力量、运动范围、肌肉扭矩和静态平衡测试。

结果

结果显示功能指标与结构改变之间存在显著的线性或非线性关系(放射学评估的最大斯皮尔曼相关系数范围为0.3至0.36,人工智能评估为0.33至0.49,而放射学评估的最大归一化互信息范围为0.52至0.57,人工智能评估为0.42至0.6)。此外,当将基于人工智能的磁共振评估用作输入时,这些关联始终证明更稳健,或者显著关系的数量超过了放射学评估得出的数量。最终,仅使用结构参数作为输入使我们能够解释特定功能组内高达59%的方差。

结论

该分析表明结构参数会影响与跟腱相关的四个关键功能方面。此外,我们发现与结构化的人工智能评估相比,仅依赖放射科医生的主观意见会限制我们有效推理的能力。

研究设计

横断面研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e2/11538108/90a9ee3bec76/40798_2024_786_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验