Li Yibo, Zhou Hao, Yang Huayong, Xu Kaichen
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
Nanomicro Lett. 2024 Nov 5;17(1):57. doi: 10.1007/s40820-024-01519-w.
Despite the promising progress in conductive hydrogels made with pure conducting polymer, great challenges remain in the interface adhesion and robustness in long-term monitoring. To address these challenges, Prof. Seung Hwan Ko and Taek-Soo Kim's team introduced a laser-induced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates. The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm with a spatial resolution down to 5 μm. Moreover, they maintain impedance and charge-storage capacity even after 1 h of sonication. The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings, highlighting their promising role in the field of bioelectronics.
尽管由纯导电聚合物制成的导电水凝胶取得了令人鼓舞的进展,但在界面粘附和长期监测的稳健性方面仍存在巨大挑战。为应对这些挑战,Ko Seung Hwan教授和Kim Taek-Soo团队引入了一种激光诱导相分离和粘附方法,用于在聚合物基底上制备由纯聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐组成的导电水凝胶。经激光诱导相分离和粘附处理的导电聚合物可选择性地转变为导电水凝胶,其湿电导率为101.4 S cm,空间分辨率低至5μm。此外,即使在超声处理1小时后,它们仍能保持阻抗和电荷存储能力。微图案化电极阵列展示了其在长期体内信号记录中的潜力,突显了它们在生物电子学领域的广阔前景。