O'Neill Stephen J K, Ashizawa Minoru, McLean Alan M, Serrano Ruben Ruiz-Mateos, Shimura Tokihiko, Agetsuma Masakazu, Tsutsumi Motosuke, Nemoto Tomomi, Parmenter Christopher D J, McCune Jade A, Malliaras George G, Matsuhisa Naoji, Scherman Oren A
Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
Adv Mater. 2025 Apr 28:e2415687. doi: 10.1002/adma.202415687.
Mechanically resilient hydrogels with ion-electron mixed transport properties effectively bridge biology with electronics. An ideal bioelectronic interface can be realized through introducing electronically conductive polymers into supramolecular hydrogels. However, inhomogeneous morphologies of conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have limited mechanical properties and ion-electron interactions. Here, supramolecular conductive hydrogels that possess homogeneous ionic and electronic transport are achieved. The materials demonstrate high toughness (620 kJ m), stretchability (>1000%), softness (10.5 kPa), and conductivity (5.8 S cm), which surpasses commonly used inhomogeneous PEDOT:PSS-based hydrogels. The homogeneous network leads to higher charge injection capacitance and lower skin impedance compared to commercial electrodes or commonly used inhomogeneous PEDOT:PSS conducting networks. This significant advance arises from the homogeneous incorporation of the hydrophilic self-doped conducting polymer S-PEDOT, which has polymerized within a supramolecular polymer network template mediated by high-binding affinity host-guest crosslinks. Furthermore, the compatibility of S-PEDOT with hydrophilic secondary networks enables the realization of fully dryable and reswellable electronic devices, facilitating reusability and improving their ease of handling. It is anticipated that achieving such material architectures will offer a promising new direction in future synthesis and implementation of conductive hydrogels in the field of bioelectronics.
具有离子-电子混合传输特性的机械弹性水凝胶有效地架起了生物学与电子学之间的桥梁。通过将导电聚合物引入超分子水凝胶中,可以实现理想的生物电子界面。然而,诸如聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)等导电聚合物的不均匀形态限制了其机械性能和离子-电子相互作用。在此,实现了具有均匀离子和电子传输的超分子导电水凝胶。这些材料表现出高韧性(620 kJ m)、拉伸性(>1000%)、柔软性(10.5 kPa)和导电性(5.8 S cm),超过了常用的基于PEDOT:PSS的不均匀水凝胶。与商业电极或常用的不均匀PEDOT:PSS导电网络相比,均匀网络导致更高的电荷注入电容和更低的皮肤阻抗。这一重大进展源于亲水性自掺杂导电聚合物S-PEDOT的均匀掺入,该聚合物在由高结合亲和力主客体交联介导的超分子聚合物网络模板内聚合。此外,S-PEDOT与亲水性二级网络的兼容性使得能够实现完全可干燥和可再膨胀的电子设备,促进了可重复使用性并提高了其操作便利性。预计实现这种材料结构将为生物电子学领域导电水凝胶的未来合成和应用提供一个有前景的新方向。