Suppr超能文献

深度先导优化:利用生成式人工智能进行结构修饰。

Deep Lead Optimization: Leveraging Generative AI for Structural Modification.

作者信息

Zhang Odin, Lin Haitao, Zhang Hui, Zhao Huifeng, Huang Yufei, Hsieh Chang-Yu, Pan Peichen, Hou Tingjun

机构信息

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.

AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China.

出版信息

J Am Chem Soc. 2024 Nov 20;146(46):31357-31370. doi: 10.1021/jacs.4c11686. Epub 2024 Nov 5.

Abstract

The integration of deep learning-based molecular generation models into drug discovery has garnered significant attention for its potential to expedite the development process. Central to this is lead optimization, a critical phase where existing molecules are refined into viable drug candidates. As various methods for deep lead optimization continue to emerge, it is essential to classify these approaches more clearly. We categorize lead optimization methods into two main types: goal-directed and structure-directed. Our focus is on structure-directed optimization, which, while highly relevant to practical applications, is less explored compared to goal-directed methods. Through a systematic review of conventional computational approaches, we identify four tasks specific to structure-directed optimization: fragment replacement, linker design, scaffold hopping, and side-chain decoration. We discuss the motivations, training data construction, and current developments for each of these tasks. Additionally, we use classical optimization taxonomy to classify both goal-directed and structure-directed methods, highlighting their challenges and future development prospects. Finally, we propose a reference protocol for experimental chemists to effectively utilize Generative AI (GenAI)-based tools in structural modification tasks, bridging the gap between methodological advancements and practical applications.

摘要

将基于深度学习的分子生成模型整合到药物发现中,因其加快开发进程的潜力而备受关注。其中核心的是先导优化,这是一个将现有分子提炼成可行药物候选物的关键阶段。随着各种深度先导优化方法不断涌现,更清晰地对这些方法进行分类至关重要。我们将先导优化方法分为两种主要类型:目标导向型和结构导向型。我们关注的是结构导向型优化,它虽然与实际应用高度相关,但与目标导向型方法相比,研究较少。通过对传统计算方法的系统综述,我们确定了结构导向型优化特有的四项任务:片段替换、连接子设计、骨架跃迁和侧链修饰。我们讨论了每项任务的动机、训练数据构建和当前进展。此外,我们使用经典优化分类法对目标导向型和结构导向型方法进行分类,突出它们面临的挑战和未来发展前景。最后我们为实验化学家提出了一个参考方案,以便在结构修饰任务中有效利用基于生成式人工智能(GenAI)的工具,弥合方法进步与实际应用之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验